Skillnad mellan versioner av "Övningar till Rotekvationer och högre gradsekvationer"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 164: | Rad 164: | ||
:<small><small>[[1.1 Svar 13|Svar 13]] | [[1.1 Lösning 13|Lösning 13]]</small></small> | :<small><small>[[1.1 Svar 13|Svar 13]] | [[1.1 Lösning 13|Lösning 13]]</small></small> | ||
+ | |||
+ | = Facit = | ||
+ | |||
+ | == 1a) == | ||
+ | <math> - 5\,x - 11 </math> | ||
+ | |||
+ | Polynom av grad 1. Koefficienter: -5 och -11. | ||
+ | |||
+ | == 1b) == | ||
+ | <math> 11\,x + 1 </math> | ||
+ | |||
+ | Polynom av grad 1. Koefficienter: 11 och 1. | ||
+ | |||
+ | == 1c) == | ||
+ | <math> -24\,x^2\,+\,22\,x\,+\,30 </math> | ||
+ | |||
+ | Polynom av grad 2. Koefficienter: -24, 22 och 30. | ||
+ | |||
+ | == 1d) == | ||
+ | <math> {3\,x - 5 \over - 8\,x - 6} </math> | ||
+ | |||
+ | Inget polynom. | ||
+ | |||
+ | == 2a) == | ||
+ | <math> - 12\,x + 2</math> | ||
+ | |||
+ | Polynom av grad 1. Koefficienter är -12 och 2. | ||
+ | |||
+ | == 2b) == | ||
+ | <math> 8\,x^2 - 2\,x + 2 </math> | ||
+ | |||
+ | Polynom av grad 2. Koefficienter: 8, -2 och 2. | ||
+ | |||
+ | == 2c) == | ||
+ | <math> -16\,x^4 + 8\,x^3 + 27\,x^2 - 10\,x </math> | ||
+ | |||
+ | Polynom av grad 4. Koefficienter: -16, 8, 27 och -10. | ||
+ | |||
+ | == 2d) == | ||
+ | <math> {4\,x^2 - 7\,x + 2 \over -4\,x^2 - 5\,x} </math> | ||
+ | |||
+ | Inget polynom. | ||
+ | |||
+ | == 3a) == | ||
+ | <math> P(x) = 2\,x^2 +\,21\,x </math> | ||
+ | |||
+ | == 3b) == | ||
+ | <math> \displaystyle -19 </math> | ||
+ | |||
+ | == 3c) == | ||
+ | <math> \displaystyle x_1 = 0 </math> | ||
+ | |||
+ | <math> \displaystyle x_2 = -10,5 </math> | ||
+ | |||
+ | == 4a) == | ||
+ | <math> 2\,x^2 - 2\,x + 5 </math> | ||
+ | |||
+ | == 4b) == | ||
+ | <math> \displaystyle 17 </math> | ||
+ | |||
+ | == 5a) == | ||
+ | Vi sätter in 2,586 sekunder för x i funktionen | ||
+ | |||
+ | <math> y = f\,(x) = 90\,x - 4,9\,x^2 </math> | ||
+ | |||
+ | och får | ||
+ | |||
+ | <math> f(2,586) = 90 \cdot 2,586 - 4,9 \cdot 2,586\,^2 = 199,97 </math> | ||
+ | |||
+ | vilket avrundat till hela meter ger 200 m. | ||
+ | |||
+ | Samma sak görs med den andra tiden 15,781 sekunder: | ||
+ | |||
+ | <math> f(15,781) = 90 \cdot 15,781 - 4,9 \cdot 15,781\,^2 = 199,99 </math> | ||
+ | |||
+ | Även detta ger avrundat 200 m. | ||
+ | |||
+ | == 5b) == | ||
+ | <math> \displaystyle 413 \; \rm m </math> | ||
+ | |||
+ | == 6a) == | ||
+ | Xmin = 0 | ||
+ | |||
+ | Xmax = 20 | ||
+ | |||
+ | Xscl = 2 | ||
+ | |||
+ | Ymin = 0 | ||
+ | |||
+ | Ymax = 420 | ||
+ | |||
+ | Yscl = 50 | ||
+ | |||
+ | == 6b) == | ||
+ | [[Image: Uppg_6b_Raket_70.jpg]] | ||
+ | |||
+ | == 6c) == | ||
+ | 18,367 sekunder efter starten. | ||
+ | |||
+ | == 7) == | ||
+ | <math> U_5(x) = 32\,x^5\,-\,32\,x^3\,+\,6\,x </math> | ||
+ | |||
+ | == 8) == | ||
+ | <math> 3 \, x^4 + 2 \, x^3 - 3 \, x^2 - 4 \, x - 3 </math> | ||
+ | |||
+ | == 9) == | ||
+ | Påstående: | ||
+ | |||
+ | <math> \displaystyle 2(x^2 - 1)^2 + (x + 2)(x^3 - 2) - 2x + x^2 - 1 = 3x^4 + 2x^3 - 3x^2 - 4x - 3 </math> | ||
+ | |||
+ | Bevis: | ||
+ | |||
+ | <big>VL</big> = <math> 2\,(x^2 - 1)^2 + (x + 2)\,(x^3 - 2) - 2\,x + x^2 - 1 = </math> | ||
+ | |||
+ | = <math> 2\,(x^4 - 2\,x^2 + 1) + x^4 - 2\,x + 2\,x^3 - 4 - 2\,x + x^2 - 1 = </math> | ||
+ | |||
+ | = <math> 2\,x^4 - 4\,x^2 + 2 + x^4 - 2\,x + 2\,x^3 - 4 - 2\,x + x^2 - 1 = </math> | ||
+ | |||
+ | = <math> 3\,x^4 + 2\,x^3 - 3\,x^2 - 4\,x - 3 </math> | ||
+ | |||
+ | <big>HL</big> = <math> 3\,x^4 + 2\,x^3 - 3\,x^2 - 4\,x - 3 </math> | ||
+ | |||
+ | <big>VL = HL</big> <math> \Rightarrow </math> påståendet är bevisat. | ||
+ | |||
+ | == 10) == | ||
+ | <math> a = 2\, </math> | ||
+ | |||
+ | <math> b = 3\, </math> | ||
+ | |||
+ | == 11a) == | ||
+ | <math> Q(x) = x^2 - (a+b)\cdot x + a\,b </math> | ||
+ | |||
+ | <math> a = 2\, </math> | ||
+ | |||
+ | <math> b = 8\, </math> | ||
+ | |||
+ | == 11b) == | ||
+ | 2 och 8 är lösningar till 2:a gradsekvationen: | ||
+ | |||
+ | :<math> x^2 - 10\,x + 16 = 0 </math> | ||
+ | |||
+ | Prövning för 2: | ||
+ | |||
+ | VL: <math> 2^2 - 10\cdot 2 + 16 = 4 - 20 + 16 = 0 </math> | ||
+ | |||
+ | HL: <math> 0 </math> | ||
+ | |||
+ | VL <math> = </math> HL <math> \Rightarrow\, </math> 2 är en lösning. | ||
+ | |||
+ | Prövning för 8: | ||
+ | |||
+ | VL: <math> 8^2 - 10\cdot 8 + 16 = 64 - 80 + 16 = 0 </math> | ||
+ | |||
+ | HL: <math> 0 </math> | ||
+ | |||
+ | VL <math> = </math> HL <math> \Rightarrow\, </math> 8 är en lösning. | ||
+ | |||
+ | == 12a) == | ||
+ | <math> x_1\, = {1 \over 8} </math> | ||
+ | |||
+ | <math> x_2\, = -1 </math> | ||
+ | |||
+ | == 12b) == | ||
+ | <math> k\, = 8 </math> | ||
+ | |||
+ | <math> a\, = 8 </math> | ||
+ | |||
+ | <math> b\, = -1 </math> | ||
+ | |||
+ | <math> c\, = 1 </math> | ||
+ | |||
+ | <math> d\, = 1 </math> | ||
+ | |||
[[Matte:Copyrights|Copyright]] © 2010-2012 Taifun Alishenas. All Rights Reserved. | [[Matte:Copyrights|Copyright]] © 2010-2012 Taifun Alishenas. All Rights Reserved. |
Versionen från 22 augusti 2012 kl. 18.08
Teori | Övningar |
G-övningar: 1-3
Övning 1
Lös följande rotekvationer:
a) \( \sqrt{x} = 9 \)
b) \( \sqrt{x} = - 9 \)
c) \( 5 - \sqrt{x} = 1 \)
Alternativt:
- Svar 1a | Lösning 1a | Svar 1b | Lösning 1b | Svar 1c | Lösning 1c
Övning 2
Lös följande ekvationer med den metod som förklaras i Teori-delen.
a) \( 2\,\sqrt{x} - x = 1 \)
b) \( x + \sqrt{5\,x - 1} = 3 \)
c) \( 6\,x - 3\,\sqrt{9+x} = -9 \)
Alternativt:
- Svar 2a | Lösning 2a | Svar 2b | Lösning 2b | Svar 2c | Lösning 2c
Övning 3
Lös följande rotekvationer:
a) \( x = \sqrt{x+7} - 1 \)
b) \( {x + \sqrt{x} \over 7} = 6 \)
c) \( 2\,(x + 8) = 9\,\sqrt{4\,x} \)
Alternativt:
- Svar 3a | Lösning 3a | Svar 3b | Lösning 3b | Svar 3c | Lösning 3c
VG-övningar: 4-8
Övning 4
Lös rotekvationen
a) \( \sqrt{x^2 + 1} = x - 3 \)
b) Rita graferna till funktionerna \( y_1 = \sqrt{x^2 + 1} \) och \( y_2 = x - 3\, \) i ett och samma koordinatsystem. Använd följande inställningar för WINDOW i din grafritande räknare: Xmin = -10, Xmax = 10, Xscl = 2, Ymin = -10, Ymax = 10, Yscl = 2. Motivera ditt svar i a) med hjälp av graferna.
c) Rita graferna till funktionerna \( \displaystyle y_1 = x^2 + 1 \) och \( y_2 = (x - 3)^2\, \) i ett och samma koordinatsystem. Använd följande inställningar för WINDOW i din grafritande räknare: Xmin = -3, Xmax = 6, Xscl = 1, Ymin = 0, Ymax = 10, Yscl = 1. Tolka resultatet.
Alternativt:
Övning 5
a) Modifiera rotekvationen
\( \sqrt{x^2 + 1} = x - 3 \)
i övning 4 så att den får en lösning genom att titta på grafen som du (förhoppningsvis) ritade i övning 4b. Rita graferna till funktionerna på bägge leden av den modifierade rotekvationen i ett och samma koordinatsystem så att man ser lösningen grafiskt. Använd samma inställningar för WINDOW i din grafritande räknare som i övning 4b.
b) Lös den modifierade rotekvationen algebraiskt. Ange svaret med 2 decimalers noggrannhet.
Alternativt:
- Svar 5a | Lösning 5a | Svar 5b | Lösning 5b
Övning 6
Lös ekvationen
\( x^4 - 29\;x^2 = -100 \)
Alternativt:
Övning 7
Lös följande ekvation, som är samma som i övning 2a, här med substitutionen \( t = \sqrt{x} \).
\( 2\,\sqrt{x} - x = 1 \)
Alternativt:
Övning 8
Lös följande ekvation och ange svaret med två decimaler\[ x\,\sqrt{x}\, + 4 = 8 \]
Alternativt:
MVG-övningar: 9-13
Övning 9
Lös följande rotekvation exakt\[ 2 = - { x \over \sqrt{1-x^2} } \]
Alternativt:
Övning 10
Lös följande ekvation exakt genom att använda en lämplig substitution\[ {1 \over x} = 306 - {1 \over \sqrt{x}} \]
Alternativt:
Övning 11
Lös följande 4:e gradsekvation med en lämplig substitution\[ {1\over2}\,(x^2 + 4\,x + 1)^2 = {3\over2}\,-\,(x^2 + 4\,x + 1) \]
Alternativt:
Övning 12
Lös ekvationen
\( \sqrt{ x + 2 + \sqrt{2\;x + 7}} = 4 \)
Alternativt:
Övning 13
Undersök om följande ekvation har en lösning. Om ja ange den. Om nej motivera\[ 6\;x = 1 - \sqrt{ 36\;x^2 - {1 \over x} } \]
Alternativt:
Facit
1a)
\( - 5\,x - 11 \)
Polynom av grad 1. Koefficienter: -5 och -11.
1b)
\( 11\,x + 1 \)
Polynom av grad 1. Koefficienter: 11 och 1.
1c)
\( -24\,x^2\,+\,22\,x\,+\,30 \)
Polynom av grad 2. Koefficienter: -24, 22 och 30.
1d)
\( {3\,x - 5 \over - 8\,x - 6} \)
Inget polynom.
2a)
\( - 12\,x + 2\)
Polynom av grad 1. Koefficienter är -12 och 2.
2b)
\( 8\,x^2 - 2\,x + 2 \)
Polynom av grad 2. Koefficienter: 8, -2 och 2.
2c)
\( -16\,x^4 + 8\,x^3 + 27\,x^2 - 10\,x \)
Polynom av grad 4. Koefficienter: -16, 8, 27 och -10.
2d)
\( {4\,x^2 - 7\,x + 2 \over -4\,x^2 - 5\,x} \)
Inget polynom.
3a)
\( P(x) = 2\,x^2 +\,21\,x \)
3b)
\( \displaystyle -19 \)
3c)
\( \displaystyle x_1 = 0 \)
\( \displaystyle x_2 = -10,5 \)
4a)
\( 2\,x^2 - 2\,x + 5 \)
4b)
\( \displaystyle 17 \)
5a)
Vi sätter in 2,586 sekunder för x i funktionen
\( y = f\,(x) = 90\,x - 4,9\,x^2 \)
och får
\( f(2,586) = 90 \cdot 2,586 - 4,9 \cdot 2,586\,^2 = 199,97 \)
vilket avrundat till hela meter ger 200 m.
Samma sak görs med den andra tiden 15,781 sekunder\[ f(15,781) = 90 \cdot 15,781 - 4,9 \cdot 15,781\,^2 = 199,99 \]
Även detta ger avrundat 200 m.
5b)
\( \displaystyle 413 \; \rm m \)
6a)
Xmin = 0
Xmax = 20
Xscl = 2
Ymin = 0
Ymax = 420
Yscl = 50
6b)
6c)
18,367 sekunder efter starten.
7)
\( U_5(x) = 32\,x^5\,-\,32\,x^3\,+\,6\,x \)
8)
\( 3 \, x^4 + 2 \, x^3 - 3 \, x^2 - 4 \, x - 3 \)
9)
Påstående\[ \displaystyle 2(x^2 - 1)^2 + (x + 2)(x^3 - 2) - 2x + x^2 - 1 = 3x^4 + 2x^3 - 3x^2 - 4x - 3 \]
Bevis:
VL = \( 2\,(x^2 - 1)^2 + (x + 2)\,(x^3 - 2) - 2\,x + x^2 - 1 = \)
= \( 2\,(x^4 - 2\,x^2 + 1) + x^4 - 2\,x + 2\,x^3 - 4 - 2\,x + x^2 - 1 = \)
= \( 2\,x^4 - 4\,x^2 + 2 + x^4 - 2\,x + 2\,x^3 - 4 - 2\,x + x^2 - 1 = \)
= \( 3\,x^4 + 2\,x^3 - 3\,x^2 - 4\,x - 3 \)
HL = \( 3\,x^4 + 2\,x^3 - 3\,x^2 - 4\,x - 3 \)
VL = HL \( \Rightarrow \) påståendet är bevisat.
10)
\( a = 2\, \)
\( b = 3\, \)
11a)
\( Q(x) = x^2 - (a+b)\cdot x + a\,b \)
\( a = 2\, \)
\( b = 8\, \)
11b)
2 och 8 är lösningar till 2:a gradsekvationen:
\[ x^2 - 10\,x + 16 = 0 \]
Prövning för 2:
VL\[ 2^2 - 10\cdot 2 + 16 = 4 - 20 + 16 = 0 \]
HL\[ 0 \]
VL \( = \) HL \( \Rightarrow\, \) 2 är en lösning.
Prövning för 8:
VL\[ 8^2 - 10\cdot 8 + 16 = 64 - 80 + 16 = 0 \]
HL\[ 0 \]
VL \( = \) HL \( \Rightarrow\, \) 8 är en lösning.
12a)
\( x_1\, = {1 \over 8} \)
\( x_2\, = -1 \)
12b)
\( k\, = 8 \)
\( a\, = 8 \)
\( b\, = -1 \)
\( c\, = 1 \)
\( d\, = 1 \)
Copyright © 2010-2012 Taifun Alishenas. All Rights Reserved.