Skillnad mellan versioner av "Övningar till Rotekvationer och högre gradsekvationer"

Från Mathonline
Hoppa till: navigering, sök
m (Övning 10)
m
Rad 1: Rad 1:
__NOTOC__
+
<!-- __NOTOC__ -->
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" | &nbsp;
 
| style="border-bottom:1px solid #797979" width="5px" | &nbsp;

Versionen från 19 februari 2011 kl. 12.08

       Teori          Övningar      

G-övningar: 1-3

Övning 1

Lös följande rotekvationer:

a) \( \sqrt{x} = 9 \)

b) \( \sqrt{x} = - 9 \)

c) \( 5 - \sqrt{x} = 1 \)

Övning 2

Lös följande ekvationer med den metod som förklaras i Teori-delen.

a) \( 2\,\sqrt{x} - x = 1 \)

b) \( x + \sqrt{5\,x - 1} = 3 \)

c) \( 6\,x - 3\,\sqrt{9+x} = -9 \)

Övning 3

Lös följande rotekvationer:

a) \( x = \sqrt{x+7} - 1 \)

b) \( {x + \sqrt{x} \over 7} = 6 \)

c) \( 2\,(x + 8) = 9\,\sqrt{4\,x} \)

VG-övningar: 4-8

Övning 4

Lös rotekvationen

a) \( \sqrt{x^2 + 1} = x - 3 \)

b) Rita graferna till funktionerna \( y_1 = \sqrt{x^2 + 1} \) och \( y_2 = x - 3\, \) i ett och samma koordinatsystem. Använd följande inställningar för WINDOW i din grafritande räknare: Xmin = -10, Xmax = 10, Xscl = 2, Ymin = -10, Ymax = 10, Yscl = 2. Motivera ditt svar i a) med hjälp av graferna.

c) Rita graferna till funktionerna \( \displaystyle y_1 = x^2 + 1 \) och \( y_2 = (x - 3)^2\, \) i ett och samma koordinatsystem. Använd följande inställningar för WINDOW i din grafritande räknare: Xmin = -3, Xmax = 6, Xscl = 1, Ymin = 0, Ymax = 10, Yscl = 1. Tolka resultatet.

Övning 5

a) Modifiera rotekvationen

\( \sqrt{x^2 + 1} = x - 3 \)

i övning 4 så att den får en lösning genom att titta på grafen som du (förhoppningsvis) ritade i övning 4b. Rita graferna till funktionerna på bägge leden av den modifierade rotekvationen i ett och samma koordinatsystem så att man ser lösningen grafiskt. Använd samma inställningar för WINDOW i din grafritande räknare som i övning 4b.

b) Lös den modifierade rotekvationen algebraiskt. Ange svaret med 2 decimalers noggrannhet.

Övning 6

Lös ekvationen

\( x^4 - 29\;x^2 = -100 \)

Övning 7

Lös följande ekvation, som är samma som i övning 2a, här med substitutionen \( t = \sqrt{x} \).

\( 2\,\sqrt{x} - x = 1 \)

Övning 8

Lös följande ekvation och ange svaret med två decimaler\[ x\,\sqrt{x}\, + 4 = 8 \]

MVG-övningar: 9-13

Övning 9

Lös följande rotekvation exakt\[ 2 = - { x \over \sqrt{1-x^2} } \]

Övning 10

Lös följande ekvation exakt genom att använda en lämplig substitution\[ {1 \over x} = 306 - {1 \over \sqrt{x}} \]

Övning 11

Lös följande 4:e gradsekvation med en lämplig substitution\[ {1\over2}\,(x^2 + 4\,x + 1)^2 = {3\over2}\,-\,(x^2 + 4\,x + 1) \]

Övning 12

Lös ekvationen

\( \sqrt{ x + 2 + \sqrt{2\;x + 7}} = 4 \)

Övning 13

Undersök om följande ekvation har en lösning. Om ja ange den. Om nej motivera\[ 6\;x = 1 - \sqrt{ 36\;x^2 - {1 \over x} } \]