Skillnad mellan versioner av "3.5 Övningar till Extremvärdesproblem"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 6: | Rad 6: | ||
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
− | |||
Rad 12: | Rad 11: | ||
− | |||
<div class="ovnE"> | <div class="ovnE"> | ||
+ | == <b><span style="color:#931136">Övning 1</span></b> == | ||
<table> | <table> | ||
<tr> | <tr> | ||
Rad 22: | Rad 21: | ||
Vilken position av <math> \, P \, (x, \, y) \, </math> ger maximal area till den skuggade rektangeln? | Vilken position av <math> \, P \, (x, \, y) \, </math> ger maximal area till den skuggade rektangeln? | ||
− | a) Vad är problemets [[3.5_Extremvärdesproblem# | + | a) Vad är problemets [[3.5_Extremvärdesproblem#Bivillkor_f.C3.B6r_ett_extremv.C3.A4rdesproblem|<strong><span style="color:blue">bivillkor</span></strong>]]? |
− | b) Ställ upp problemets [[3.5_Extremvärdesproblem# | + | b) Ställ upp problemets [[3.5_Extremvärdesproblem#M.C3.A5lfunktion_f.C3.B6r_ett_extremv.C3.A4rdesproblem|<strong><span style="color:blue">målfunktion</span></strong>]] som en funktion av endast en variabel. |
c) Bestäm koordinaterna till <math> \, P \, </math> så att rektangelns area blir maximal. | c) Bestäm koordinaterna till <math> \, P \, </math> så att rektangelns area blir maximal. | ||
Rad 37: | Rad 36: | ||
− | |||
<div class="ovnE"> | <div class="ovnE"> | ||
+ | == <b><span style="color:#931136">Övning 2</span></b> == | ||
<table> | <table> | ||
<tr> | <tr> | ||
Rad 58: | Rad 57: | ||
− | |||
<div class="ovnE"> | <div class="ovnE"> | ||
+ | == <b><span style="color:#931136">Övning 3</span></b> == | ||
<table> | <table> | ||
<tr> | <tr> | ||
Rad 79: | Rad 78: | ||
− | |||
<div class="ovnE"> | <div class="ovnE"> | ||
+ | == <b><span style="color:#931136">Övning 4</span></b> == | ||
<table> | <table> | ||
<tr> | <tr> | ||
Rad 110: | Rad 109: | ||
− | |||
<div class="ovnE"> | <div class="ovnE"> | ||
== <b><span style="color:#931136">Övning 5</span></b> == | == <b><span style="color:#931136">Övning 5</span></b> == | ||
Rad 137: | Rad 135: | ||
f) Kan du intuitivt komma på andra geometriska figurer än rektangeln som | f) Kan du intuitivt komma på andra geometriska figurer än rektangeln som | ||
− | + | skulle kunna maximera stängselns area bättre? | |
</td> | </td> | ||
Rad 154: | Rad 152: | ||
− | |||
<div class="ovnC"> | <div class="ovnC"> | ||
+ | == <b><span style="color:#931136">Övning 6</span></b> == | ||
<table> | <table> | ||
<tr> | <tr> | ||
Rad 192: | Rad 190: | ||
− | |||
<div class="ovnC"> | <div class="ovnC"> | ||
+ | == <b><span style="color:#931136">Övning 7</span></b> == | ||
SJ har <math> \, 20\,000 \, </math> passagerare per månad på en viss bansträcka med ett biljettpris på <math> \, 200 \, </math> kr. | SJ har <math> \, 20\,000 \, </math> passagerare per månad på en viss bansträcka med ett biljettpris på <math> \, 200 \, </math> kr. | ||
Rad 221: | Rad 219: | ||
− | |||
<div class="ovnA"> | <div class="ovnA"> | ||
+ | == <b><span style="color:#931136">Övning 8</span></b> == | ||
<table> | <table> | ||
<tr> | <tr> | ||
Rad 252: | Rad 250: | ||
− | |||
<div class="ovnA"> | <div class="ovnA"> | ||
+ | == <b><span style="color:#931136">Övning 9</span></b> == | ||
<table> | <table> | ||
<tr> | <tr> | ||
Rad 260: | Rad 258: | ||
plåt till förfogande (efter spill). Dvs cylinderns begränsningsarea <math> \, = \, A \; {\rm cm}^2 \, </math>. | plåt till förfogande (efter spill). Dvs cylinderns begränsningsarea <math> \, = \, A \; {\rm cm}^2 \, </math>. | ||
− | I | + | I genomgången, [[3.5_Extremvärdesproblem#Exempel_3_Konservburk|<strong><span style="color:blue">Exempel 3 Konservburk</span></strong>]], löstes denna uppgift med <math>A=500</math>. |
− | Här ska den | + | Här ska du lösa den generellt för en given konstant <math> \, A \, </math>. |
Vilka mått på konserven maximerar volymen? | Vilka mått på konserven maximerar volymen? |
Versionen från 2 januari 2016 kl. 19.27
Genomgång | Övningar |
E-övningar: 1-5
Övning 1
I figuren till höger rör sig punkten \( \, P \, \) på den räta linje vars ekvation är:
Vilken position av \( \, P \, (x, \, y) \, \) ger maximal area till den skuggade rektangeln? a) Vad är problemets bivillkor? b) Ställ upp problemets målfunktion som en funktion av endast en variabel. c) Bestäm koordinaterna till \( \, P \, \) så att rektangelns area blir maximal. d) Beräkna rektangelns maximala area. |
Övning 2
Övning 3
Övning 4
Övning 5
C-övningar: 6-7
Övning 6
Du ska bygga en öppen låda av en kvadratisk kartong på \( \, 10 \times 10 \; {\rm dm} \, \).
Det gör du genom att skära ut små kvadrater av längden \( \, x \, \) från karton- gens fyra hörn enligt figuren. Hur ska du välja \( \, x \, \) för att få den största möjliga volymen \( \, V \, \) för din öppna låda? a) Inför en ny beteckning och ange problemets bivillkor, se Lösning 5 e). b) Ställ upp problemets målfunktion \( \, V(x) \, \). c) Ange målfunktionens definitionsmängd. d) Bestäm \( \, x \, \) så att lådans volym \( \, V(x) \, \) blir maximal. e) Beräkna lådans maximala volym. f) Vilka mått har lådan med maximal volym? Ange dina svar med två decimaler. |
Övning 7
SJ har \( \, 20\,000 \, \) passagerare per månad på en viss bansträcka med ett biljettpris på \( \, 200 \, \) kr.
En marknadsundersökning visar att varje höjning av biljettpriset med \( \, 1 \, \) kr skulle medföra en förlust av \( \, 80 \, \) passagerare per månad.
Vilken biljettprishöjning kommer att maximera intäkten per månad?
a) Ange problemets bivillkor om:
- \[ x \, = \, {\rm Den\;planerade\;prishöjningen\;i\;kr.} \]
- \[ y \, = \, {\rm Antalet\;passagerare\;per\;månad\;efter\;en\;sådan\;prishöjning.} \]
b) Ställ upp problemets målfunktionen \( \, I(x) \, \) för SJ:s intäkt per månad.
c) Bestäm \( \, x \, \) så att intäkten \( \, I(x) \, \) blir så stor som möjligt.
d) Beräkna den maximala intäkten efter en biljettprishöjning på \( \, x \, \) kr.
e) För vilka prishöjningar kommer det inte längre att löna sig att höja biljettpriset?
A-övningar: 8-9
Övning 8
Övning 9
För att producera en cylinderformad konservburk har man en viss mängd \( \, A \, \)
plåt till förfogande (efter spill). Dvs cylinderns begränsningsarea \( \, = \, A \; {\rm cm}^2 \, \). I genomgången, Exempel 3 Konservburk, löstes denna uppgift med \(A=500\). Här ska du lösa den generellt för en given konstant \( \, A \, \). Vilka mått på konserven maximerar volymen? a) Formulera problemets bivillkor. b) Ställ upp problemets målfunktion. c) Bestäm cylinderns radie så att burkens volym blir maximal. d) Bestäm cylinderns höjd när burkens volym maximeras och visa:
|
|
- \[ 2 \; r \; = \; h \]
Copyright © 2011-2015 Math Online Sweden AB. All Rights Reserved.