Övningar till Rotekvationer och högre gradsekvationer
Teori | Övningar |
G-övningar: 1-6
Övning 1
Är följande ekvationer rotekvationer? Motivera ditt svar.
a) \( \sqrt{3} \cdot x + 6\,\sqrt{7} = \sqrt{2} \)
b) \( \sqrt{x} \cdot 4 + 5 = 2\,x \)
Övning 2
Lös ekvationerna
a) \( \sqrt{x} = 9 \)
b) \( \sqrt{x} = - 9 \)
Övning 3
Lös följande ekvation med den metod som förklaras i Teori-delen (kvadrering).
\( 2\,\sqrt{x} - x = 1 \)
Övning 4
Lös följande rotekvation\[ \sqrt{x+7} = x + 1 \]
Övning 5
Ange talet tio tusen fem med siffror.
Övning 6
Skriv upp det störst möjliga åttasiffriga talet och ange det i ord.
VG-övningar: 7-9
Övning 7
Lös följande ekvation (samma som i övning 3) med substitutionen \( t = \sqrt{x} \).
\( 2\,\sqrt{x} - x = 1 \)
Övning 8
När Lisa efter sommarlovet kommer till skolan har hon glömt skolans portkod. Men hon kommer ihåg att den började med 2 och att resten bestod av de tre siffrorna 4, 7 och 9 och att ingen siffra förekom två gånger. Vilka kombinationer måste hon maximalt prova för att komma in? Dra nytta av det du lärde dig i övning 7.
Övning 9
Kasta om siffrorna i talet 8 239 ska så att man får ett fyrasiffrigt tal som är så nära 3 000 som möjligt.
MVG-övningar: 10-11
Övning 10
Hitta det minsta femsiffriga tal vars tiotal är dubbelt så stor som dess tusental. Dessutom ska det sökta talet inte ändra sitt värde om man kastar om hundratalet med entalet.
Övning 11
Ange talet 24 391 som en summa av termer där varje term har formen "(siffra 0-9) multiplicerad med 10-potenser".