Skillnad mellan versioner av "3.4 Övningar till Kurvkonstruktioner"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 168: | Rad 168: | ||
== <b>Övning 7</b> == | == <b>Övning 7</b> == | ||
<div class="ovnA"> | <div class="ovnA"> | ||
− | + | I övning 6 (ovan) hade både Kalle och Jennifer löst uppgiften med hjälp av en teckenstudie. | |
Bestäm den kritiska punkten <math> x = 0 </math>:s karaktär (övn 6a) med hjälp av högre derivator (istället för teckenstudie) genom att använda följande regel: | Bestäm den kritiska punkten <math> x = 0 </math>:s karaktär (övn 6a) med hjälp av högre derivator (istället för teckenstudie) genom att använda följande regel: |
Versionen från 4 januari 2017 kl. 14.17
<< Förra avsnitt | Genomgång | Övningar | Nästa avsnitt >> |
I alla övningar där det förekommer "Rita grafen ..." ska du använda grafräknaren.
E-övningar: 1-4
Övning 1
Följande graf till en funktion med definitionsmängden \( \, -6 \leq x \leq 5 \) är given:
a) Avläs från grafen funktionens största och minsta värde.
b) Hur många nollställen har funktionens derivata? Motivera.
c) Avläs från grafen derivatans nollställen.
d) Anta att grafen visar en polynomfunktion. Ange polynomets grad. Motivera.
Övning 2
a) Figuren visar grafen till en funktion med samma förlopp som i övning 1,
- men med en annan definitionsmängd: \( \, -6 < x < 5 \).
- Ange funktionens största och minsta värde.
b) Funktionen \( \, \displaystyle f(x) = x - \frac{x^3}{3} \, \) är definierad i intervallet \( \, -3 \leq x \leq 3 \).
- Bestäm funktionens lokala och globala maxima och minima samt deras koordinater.
c) En funktion med samma funktionsuttryck som i b) har definitionsmängden \( \, -3 < x < 3 \).
- Ange funktionens globala maxima och minima.
Övning 3
Följande funktion är given:
- \[ f(x) \, = \, {4 \over 3} \, x^3 - 16 \, x \]
a) Derivera \( \, f(x) \, \) två gånger.
b) Beräkna derivatans nollställen.
c) Sätt in derivatans nollställen i andraderivatan och avgör om \( \,f(x) \, \) har några lokala maximi-, minimi- eller terasspunkter.
d) Ange de i c) hittade punkters koordinater.
e) Kontrollera dina resultat genom att rita graferna till \( \, f(x) \, \) och \( \, f\,'(x) \, \) i olika koordinatsystem.
Övning 4
Följande funktion är definierad i intervallet \( \, -1 \leq x \leq 5 \, \):
- \[ y \, = \, f(x) \, = \, -{x^3 \over 3} \, + \, 2\,x^2 \, - \, 3\,x \, + \, 1 \qquad \]
a) Undersök algebraiskt om \( \,f(x) \, \) har några lokala maximi-, minimi- eller terasspunkter och ange deras koordinater.
b) Skissa dina resultat från a).
c) Beräkna funktionens största och minsta värden.
d) Inför dina resultat i samma skiss som i b) och skissa förloppet till \( \, f(x) \, \).
e) Kontrollera dina resultat genom att rita grafen till \( \, f(x) \, \).
C-övningar: 5-6
Övning 5
En funktions första, andra och tredje derivata är givna i grafisk form:
Använd graferna ovan för att skissa det ungefärliga förloppet till funktionen \( \, f(x) \, \).
Motivera din skiss.
Övning 6
Kalle kommer hem från skolan där han skrivit nationella provet i Matte 3 och bl.a. löst följande uppgift:
Undersök om följande funktion har en lokal maximi-, minimi- eller terasspunkt för \( \, x \, = \, 0 \, \):
- \[ \, f(x) \, = \, x^4\, (1 \, - \, x) \, \]
Han berättar för Jennifer att han pga följande teckentabell har identifierat \( \, x \, = \, 0 \, \) som en terasspunkt:
\(x\) | \(-1\) | \(0\) | \(1\) |
\( f\,'(x) \) | \(-\) | \(0\) | \(-\) |
\( \,f(x) \) | ↘ | Terass | ↘ |
Dessutom berättar Kalle att han på sin grafräknare har ritat grafen till \( \, f(x) \, \) som även visat en terasspunkt.
Jennifer kollar Kalles lösning och kommer fram till en annan lösning:
Hon identifierar \( \, x \, = \, 0 \, \) som en annan typ av kritisk punkt. Jennifer menar:
Varken av Kalles teckentabell eller av räknarens graf kan dras slutsatsen att \( \, x = 0 \, \) är en terasspunkt.
a) Vem har rätt? Lös uppgiften själv.
b) Har \( \, f(x) \, \) även andra kritiska punkter? Om ja, hitta dem och bestäm deras karaktär.
c) Visualisera dina resultat.
A-övningar: 7-9
Övning 7
I övning 6 (ovan) hade både Kalle och Jennifer löst uppgiften med hjälp av en teckenstudie.
Bestäm den kritiska punkten \( x = 0 \):s karaktär (övn 6a) med hjälp av högre derivator (istället för teckenstudie) genom att använda följande regel:
Anta att \( \, n \, \) är ett heltal.
\( f\,'(a) = f\,''(a) = \, \cdots \, = f\,^{(n-1)}(a) = 0 \, \) och \( \, {\color {Red} {f\,^{(n)}(a) \, < \, 0}} \quad \Longrightarrow \quad x = a \; \) är ett maximum om \( \; {\color {Red} n} \; \) är jämnt.
\( f\,'(a) = f\,''(a) = \, \cdots \, = f\,^{(n-1)}(a) = 0 \, \) och \( \, {\color {Red} {f\,^{(n)}(a) \, > \, 0}} \quad \Longrightarrow \quad x = a \; \) är ett minimum om \( \; {\color {Red} n} \; \) är jämnt.
\( f\,'(a) = f\,''(a) = \, \cdots \, = f\,^{(n)}(a) = 0 \, \) och \( \, {\color {Red} {f\,^{(n+1)}(a) \, \neq \, 0}} \quad \Longrightarrow \quad x = a \; \) är en terasspunkt om \( \; {\color {Red} n} \; \) är jämnt.
\( {\color {Red} {f\,^{(n)}(x)}} \; \) betecknar den \( \, {\color {Red} n}\)-te derivatan av funktionen \( y = f(x) \). För \( n > 3 \) skrivs \( \, n \, \) (derivatans grad) med romerska siffror.
Övning 8
Ställ upp en 3:e gradsfunktion som går genom origo och har:
a) Endast en kritisk punkt.
b) Exakt två kritiska punkter.
c) Ingen kritisk punkt alls.
d) Visualisera dina resultat genom att rita graferna till funktionerna ovan samt deras derivator.
Övning 9
Följande funktion är given:
- \[ f(x) \, = \, x^2 \, (x + 1) \, (2\,x + 5) + 1 \]
a) Bestäm funktionens alla ev. lokala maximi-, minimi- eller terasspunkter och ange deras koordinater.
b) Hitta funktionens alla inflexionspunkter samt deras koordinater.
c) Rita grafen till \( \, f(x) \, \) och \( \, f\,'(x) \, \) i två olika koordinatsystem.
- Markera inflexionspunkterna i båda graferna.
- Förklara varför derivatan har sina extrema i funktionens inflexionspunkter.
Ange alla numeriska svar med tre decimaler.
Copyright © 2011-2016 Math Online Sweden AB. All Rights Reserved.