Skillnad mellan versioner av "1.1 Övningar till Polynom"

Från Mathonline
Hoppa till: navigering, sök
m (Övning 5)
m (Övning 5)
Rad 64: Rad 64:
 
a) Visa att raketen har både efter 2,6 och 15,8 sekunder en höjd på 200 meter över marken.
 
a) Visa att raketen har både efter 2,6 och 15,8 sekunder en höjd på 200 meter över marken.
  
b) Vilken maximal höjd når raketen? Svara i hela meter. (413 m)
+
b) Vilken maximal höjd når raketen? Svara i hela meter.
  
 
</div>{{#NAVCONTENT:Svar 5a|1.2 Svar 5a|Lösning 5a|1.2 Lösning 5a|Svar 5b|1.2 Svar 5b|Lösning 5b|1.2 Lösning 5b}}
 
</div>{{#NAVCONTENT:Svar 5a|1.2 Svar 5a|Lösning 5a|1.2 Lösning 5a|Svar 5b|1.2 Svar 5b|Lösning 5b|1.2 Lösning 5b}}

Versionen från 12 december 2010 kl. 20.41

       Teori          Övningar      


G-övningar: 1-6

Övning 1

Två polynom är givna\[ P_1(x) = 3\,x - 5 \] och \( P_2(x) = - 8\,x - 6 \). Bilda deras

a) summa
b) differens
c) produkt
d) kvot

Förenkla så mycket som möjligt. Ange varje gång om resultatet är ett polynom. I fall att det är polynom ange polynomets grad samt polynomets koefficienter.

Övning 2

Gör samma sak som i övning 1 ovan med polynomen \( P_1(x) = 4\,x^2 - 7\,x + 2 \) och \( P_2(x) = -4\,x^2 - 5\,x \).

Övning 3

Förenkla följande uttryck så långt som möjligt och skriv om det till ett polynom:

a) \( \displaystyle P(x) = 4\,x^3 - 2\,x^2\,(2\,x + 6) + 7\,x\,(3 + 2\,x) \)

b) Använd svaret i a) för att beräkna \(\displaystyle P(-1)\).

c) Bestäm alla nollställen till det polynom du fick i a).

Övning 4

Utveckla följande uttryck och ordna termerna så att det blir ett polynom:

a) \( \displaystyle (x-2)^2 + (x+1)^2 \)

b) Beräkna värdet av polynomet du fick fram i a) för x = -2.

Övning 5

En rakets bana beskrivs av polynomfunktionen\[ y = 90\,x - 4,9\,x^2 \]

där y är höjden i meter och x tiden i sekunder.

a) Visa att raketen har både efter 2,6 och 15,8 sekunder en höjd på 200 meter över marken.

b) Vilken maximal höjd når raketen? Svara i hela meter.

Övning 6

Beräkna \( {4 \cdot 6 \over 7 + 5} \)

VG-övningar: 7-9

Övning 7

Följande två polynom är givna\[ U_3(x) = 8\,x^3\,-\,4\,x \]

\( U_4(x) = 16\,x^4\,-\,12\,x^2\,+\,1 \)

Utveckla polynomet \( \displaystyle U_5(x) \) med hjälp av formeln\[ U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... \]

Övning 8

Ställ upp ett polynom av 4:e grad som har koefficienterna\[ \displaystyle a_4 = 3, \quad a_3 = 2, \quad a_2 = -3, \quad a_1 = -4, \quad a_0 = -3 \]

Övning 9

Visa att följande uttryck är identiskt med polynomet från övning 8 ovan\[ 2\,(x^2 - 1)^2 + (x + 2)\,(x^3 - 2) - 2\,x + x^2 - 1 \]

MVG-övningar: 10-11

Övning 10

Hitta det värde på a för vilket följande uttryckets värde blir 0 \[ 10 - {6 \cdot (6-2) \over 3} - {3 \cdot (5 - 4) + 3 \over a-2} \]

Övning 11

Anta att följande uttryck är givet\[ { 87+13 \over (x+9)/5 } \]

a) Hitta ett positivt heltal för x så att uttryckets värde blir störst.

b) Beräkna detta maximala värde.