|
|
Rad 48: |
Rad 48: |
| | | |
| == Övning 6 == | | == Övning 6 == |
− | <div class="ovning">
| |
− | Lös ekvationen
| |
− |
| |
− | a) <math> \sqrt{x^2 -1} = x - 3 </math>
| |
− |
| |
− | b) Rita graferna till funktionerna <math> y_1 = \sqrt{x^2 -1} </math> och <math> \displaystyle y_2 = x - 3 </math> i ett och samma koordinatsystem. Använd bilden för att motivera ditt svar i a).
| |
− |
| |
− | c) Rita graferna till funktionerna <math> \displaystyle y_1 = x^2 -1 </math> och <math> \displaystyle y_2 = (x - 3)^2 </math> i ett och samma koordinatsystem. Tolka resultatet.
| |
− |
| |
− | </div>{{#NAVCONTENT:Svar 2a|1.1 Svar 2a|Lösning 2a|1.1 Lösning 2a|Svar 2b|1.1 Svar 2b|Lösning 2b|1.1 Lösning 2b}}
| |
| | | |
| == VG-övningar: 7-9 == | | == VG-övningar: 7-9 == |
Versionen från 20 november 2010 kl. 22.15
G-övningar: 1-6
Övning 1
Lös följande rotekvationer:
a) \( \sqrt{x} = 9 \)
b) \( \sqrt{x} = - 9 \)
c) \( 5 - \sqrt{x} = 1 \)
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 2
Lös följande ekvation med den metod som förklaras i Teori-delen (kvadrering).
\( 2\,\sqrt{x} - x = 1 \)
1.1 Svar 3
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 3
Lös följande rotekvation\[ \sqrt{x+7} = x + 1 \]
1.1 Svar 4
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4
Övning 5
Lös ekvationen
\( x^4 - 29\;x^2 = -100 \)
1.1 Svar 5
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 6
VG-övningar: 7-9
Övning 7
Lös följande ekvation (samma som i övning 3) med substitutionen \( t = \sqrt{x} \).
\( 2\,\sqrt{x} - x = 1 \)
1.1 Svar 7
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 8
Lös följande rotekvation\[ 6\;x = 1 - \sqrt{ 36\;x^2 - {1 \over x} } \]
1.1 Svar 8
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 9
Kasta om siffrorna i talet 8 239 ska så att man får ett fyrasiffrigt tal som är så nära 3 000 som möjligt.
1.1 Svar 9
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
MVG-övningar: 10-11
Övning 10
Lös följande rotekvation\[ \sqrt{ x + 2 + \sqrt{2\;x + 7}} = 4 \]
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 11
Ange talet 24 391 som en summa av termer där varje term har formen "(siffra 0-9) multiplicerad med 10-potenser".
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt