1.7 Övningar till Potenser
<< Förra demoavsnitt | Genomgång | Grundpotensform | Övningar | Diagnosprov kap 1 |
E-övningar: 1-4
Övning 1
Förenkla först, beräkna sedan:
a) \( \displaystyle{3\,^4 \cdot 3\,^2 \over 3\,^3} \)
b) \( 4\,^4 \cdot 4\,^{-2} / 4 \)
c) \( \displaystyle{5\,^2 \cdot\, 5\,^{-3} \over 5\,^{-2}} \)
d) \( \displaystyle{10\,^5 \cdot\, 10\,^{-5} \over 10\,^{-2} \cdot\, 10\,^3} \)
Svar 1a | Lösning 1a | Svar 1b | Lösning 1b | Svar 1c | Lösning 1c | Svar 1d | Lösning 1d
Övning 2
Svara med SANT eller FALSKT på följande påståenden och motivera:
a) \( \quad (2 \cdot 3)\,^2 \, = \, 2\,^2 \cdot 3\,^2 \)
b) \( \quad (2 \, + \, 3)\,^2 \, = \, 2\,^2 + 3\,^2 \)
c) \( \quad (4 \, / \, 2)\,^2 \, = \, 4\,^2 \, / \, 2\,^2 \)
d) \( \quad (4 \, - \, 2)\,^2 \, = \, 4\,^2 \, - \, 2\,^2 \)
e) \( \quad 2\,^3 \cdot 5\,^2 = (2 \cdot 5)\,^5 \)
Svar 2a | Lösning 2a | Svar 2b | Lösning 2b | Svar 2c | Lösning 2c | Svar 2d | Lösning 2d | Svar 2e | Lösning 2e
Övning 3
Beräkna följande uttryck:
a) \( (-2)\,^2 \)
b) \( -\,2^2 \)
c) \( (-2)\,^3 \)
d) \( (-5)\,^2 \,-\, 3\,^2 \)
Svar 3a | Lösning 3a | Svar 3b | Lösning 3b | Svar 3c | Lösning 3c | Svar 3d | Lösning 3d
Övning 4
Skriv följande grundpotensformer som vanligt tal:
a) \( 4,2 \cdot 10\,^3 \)
b) \( 4,2 \cdot 10\,^{-3} \)
c) \( 5,07 \cdot 10\,^6 \)
d) \( 5,07 \cdot 10\,^{-6} \)
Svar 4a | Lösning 4a | Svar 4b | Lösning 4b | Svar 4c | Lösning 4c | Svar 4d | Lösning 4d
C-övningar: 5-7
Övning 5
Skriv följande tal i grundpotensform:
a) \( 56\,000\,000 \)
b) \( 4\,800\,000\,000 \)
c) \( 0,0095 \)
d) \( 0,000\,020\,3 \)
Svar 5a | Lösning 5a | Svar 5b | Lösning 5b | Svar 5c | Lösning 5c | Svar 5d | Lösning 5d
Övning 6
Förenkla och beräkna följande uttryck:
a) \( \displaystyle { \left({1 \over 3}\right)^{-3} } \)
b) \( \displaystyle { \left({4^{40} \over 4} \; \Big / \; 4^{38}\right)^{-1} } \)
c) \( \displaystyle { {25 \cdot 10\,^{-3} \over 5 \cdot 10\,^{-5}}\, \cdot \,10\,^{-2} } \)
Svar 6a | Lösning 6a | Svar 6b | Lösning 6b | Svar 6c | Lösning 6c
Övning 7
Skriv om följande uttryck till en potens av en enda bas. Avgör först vilken bas som kan vara lämplig:
a) \( 8^2 \cdot 4^3 \)
b) \( \displaystyle {3^{-2} \cdot 9^2 \over 27} \)
c) \( \displaystyle {a^{-5} \cdot a^9 \over (a^{-9})^{1/3}} \)
Svar 7a | Lösning 7a | Svar 7b | Lösning 7b | Svar 7c | Lösning 7c
A-övningar: 8-9
Övning 8
Ett belopp på \( 5\,000 \) kr sätts in på ett sparkonto med \( \, 3\,\% \, \) årsränta. Inga uttag görs. Räntan läggs på kontot årsvis.
a) Hur mycket pengar finns på kontot efter \( 4 \) år?
- Använd här undantagsvis en miniräknare. I de flesta är \( \boxed{\bf\wedge} \) eller \( \boxed{x^y} \) symboler för operationen upphöjt till.
b) Hur länge tar det tills startkapitalet fördubblats? Pröva dig fram till en ungefärlig lösning med hjälp av räknaren.
- Ange tiden i hela år och månader.
Svar 8a | Lösning 8a | Svar 8b | Lösning 8b
Övning 9
Bilda uttrycket \( \, (P + Q) \cdot (P - Q) \, \) om:
- \[ \; P \; = \; 2\,^x \, + \, 2\,^{-x} \]
- \[ \; Q \; = \; 2\,^x \, - \, 2\,^{-x} \]
Tips: Bilda först \( \, (P + Q) \, \) och förenkla. Bilda sedan \( \, (P - Q) \, \) och förenkla. Multiplicera dem sist med varandra.
Copyright © 2010-2016 Math Online Sweden AB. All Rights Reserved.