3.2 Lösning 10a
Från Mathonline
Version från den 25 januari 2015 kl. 14.37 av Taifun (Diskussion | bidrag)
Vi inför ett koordinatsystem så att triangelns längre katet faller på \( x\)- och den kortare på \( y\)-axeln och den räta vinkeln hamnar i origo:
På så sätt blir hypotenusan del av en rät linje med negativ lutning. Vi kallar rektangelns andra sida för \( \, y \,\). Punkten \( \, (x, y) \, \) rör sig på denna rät linje.
Den räta linjens ekvation i \(\,k\)-form:
- \[ y \, = \, k\,x \, + \, m \]
Lutningen \( \, k \, \):
- \[ k \, = \, {\Delta y \over \Delta x} \, = \, - \, {20 \over 30} \, = \, - \, {2 \over 3} \]
Skärningspunkten med \(\,y\)-axeln:
- \[ m \, = \, 20 \]
Den räta linjens ekvation blir då:
- \[ y \, = \, - \, {2 \over 3}\,x \, + \, 20 \]
Denna ekvation kan uppfattas som det samband mellan \( \, y \,\) och \( \, x \, \) som bestäms av att rektangelns "fria" hörn är bunden till triangelns hypotenusa.
Vi använder sambandet ovan för att ställa upp ett uttryck för arean \( \, A(x) \, \) som endast beror av \( \, x \):
- \[ A(x) \, = \, x \cdot y \, = \, x \cdot (-\,{2 \over 3}\,x \, + \, 20) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]