1.3 Lösning 11a
Från Mathonline
Version från den 19 september 2012 kl. 13.15 av Taifun (Diskussion | bidrag)
Dubbelroten \( x = -1\,\) innebär följande delfaktorisering av \( P(x)\, \)\[ P(x) = x^4 - 7\,x^3 + 3\,x^2 + 31\,x + 20 = (x+1)^2 \cdot Q(x) \]
där \( Q(x)\, \) är ett 2:a gradspolynom vars koefficienter a, b och c vi får bestämma\[ Q(x) = a\,x^2 + b\,x + c \]
Detta ger följande delfaktorisering av \( P(x)\, \)\[ P(x) = x^4 - 7\,x^3 + 3\,x^2 + 31\,x + 20 = (x+1)^2 \cdot (a\,x^2 + b\,x + c) \]
Med hjälp av jämförelse av koefficienter ska vi nu bestämma koefficienterna a, b och c: