1.2 Lösning 12b

Från Mathonline
Version från den 18 december 2010 kl. 13.26 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök

\( P(x) = \;\,8\,x^2 + 7\,x - 1 = k \cdot (x - {1\over 8}) \cdot (x + 1) \)

\[ 8\,x^2 + 7\,x - 1 = k \cdot x^2 + \ldots \]

Jämförelse av koefficienten till \( x^2 \) leder till:

\[ k = 8\, \]

Insatt ovan ger\[ P(x) = \;\,8\,x^2 + 7\,x - 1 = 8 \cdot (x - {1\over 8}) \cdot (x + 1) \]

Därmed kan vi ange polynomet \(P(x)\,\):s faktorisering till\[ P(x) = \;\,8\,x^2 + 7\,x - 1 = (8\,x - 1) \cdot (x + 1) \]