Skillnad mellan versioner av "1.1 Fördjupning till Polynom"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 2: Rad 2:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[1.1 Repetition Algebra från Matte 2|Repetition: Ekvationer & Potenser]]}}
+
{{Not selected tab|[[1.1 Repetition Algebra från Matte 2|Repetition: Potenser & Ekvationer]]}}
 
{{Not selected tab|[[1.1 Polynom|Genomgång]]}}
 
{{Not selected tab|[[1.1 Polynom|Genomgång]]}}
 
{{Not selected tab|[[1.1 Övningar till Polynom|Övningar]]}}
 
{{Not selected tab|[[1.1 Övningar till Polynom|Övningar]]}}
Rad 11: Rad 11:
  
  
[[Media: Lektion_1_Polynom_Rutad.pdf|<strong><span style="color:blue">Lektion 1 Polynom</span></strong>]]
+
[[Media: Lektion_1_Polynom_Rutad.pdf|<b><span style="color:blue">Lektion 1 Polynom</span></b>]]
  
[[Media: Lektion_2_3_PolynomF_Ruta.pdf|<strong><span style="color:blue">Lektion 2-3 Polynom: Fördjupning</span></strong>]]
+
[[Media: Lektion 2 Polynom Ruta.pdf|<b><span style="color:blue">Lektion 2 Polynom: Fördjupning</span></b>]]
 +
 
 +
[[Media: Lektion 3 Polynom Ruta.pdf|<b><span style="color:blue">Lektion 3 Polynom: Fördjupning</span></b>]]
  
 
== <b><span style="color:#931136">Digital beräkning av nollställen</span></b> ==
 
== <b><span style="color:#931136">Digital beräkning av nollställen</span></b> ==
Rad 23: Rad 25:
 
==== <span style="color:#931136">Simhopp från 10-meterstorn</span> ====
 
==== <span style="color:#931136">Simhopp från 10-meterstorn</span> ====
  
Marie tävlar i simhopp från 10-meterstorn. Hennes hopp följer en bana som beskrivs av:
+
Marie tävlar i simhopp från 10-meterstorn. Hennes hopp följer en bana som beskrivs av<span style="color:black">:</span>
  
 
:::<math> y = - 5\,x^2 + 4\,x + 10 </math>
 
:::<math> y = - 5\,x^2 + 4\,x + 10 </math>
Rad 37: Rad 39:
 
:Använd din räknares ekvationslösare för att bestämma polynomets nollställe,
 
:Använd din räknares ekvationslösare för att bestämma polynomets nollställe,
  
:dvs lösa 2:a gradsekvationen:
+
:dvs lösa 2:a gradsekvationen<span style="color:black">:</span> <math> \qquad - 5\,x^2 + 4\,x + 10 = 0 </math>
 
+
:::<math> - 5\,x^2 + 4\,x + 10 = 0 </math>
+
 
</div>
 
</div>
  
Rad 45: Rad 45:
 
=== <b><span style="color:#931136">Lösning</span></b> ===
 
=== <b><span style="color:#931136">Lösning</span></b> ===
  
<div class="tolv"> <!-- tolv1 -->
+
<big>
 
Beskrivningen som ges här bygger på grafräknaren TI-82 STATS, men kan med lite modifikation tillämpas på alla grafräknare.
 
Beskrivningen som ges här bygger på grafräknaren TI-82 STATS, men kan med lite modifikation tillämpas på alla grafräknare.
</div> <!-- tolv1 -->
+
</big>
  
  
Rad 94: Rad 94:
  
  
<div class="tolv"> <!-- tolv1a -->
+
<big>
 
Vi kan använda detta närmevärde i nästa steg som startvärde för kalkylatorns ekvationslösare som kommer att precisera polynomets nollställe.
 
Vi kan använda detta närmevärde i nästa steg som startvärde för kalkylatorns ekvationslösare som kommer att precisera polynomets nollställe.
</div>
+
</big>
  
  
Rad 130: Rad 130:
 
<big> Vill du veta varför vid grafritning just de min-/max-värdena samt skalan för din räknares display (WINDOW) valdes, läs här:</big>
 
<big> Vill du veta varför vid grafritning just de min-/max-värdena samt skalan för din räknares display (WINDOW) valdes, läs här:</big>
  
<div class="ovnE"> <!-- ovnE -->
+
<div class="ovnE">
 
{{#NAVCONTENT:Del 2 av simhopp från 10-meterstorn.|Simhopp från 10-meterstorn - del 2}}
 
{{#NAVCONTENT:Del 2 av simhopp från 10-meterstorn.|Simhopp från 10-meterstorn - del 2}}
</div> <!-- ovnE -->
+
</div>
  
  
 
== <b><span style="color:#931136">Polynomfunktioner av högre grad</span></b> ==
 
== <b><span style="color:#931136">Polynomfunktioner av högre grad</span></b> ==
<div class="tolv"> <!-- tolv2 -->
+
<big>
När ett polynom tilldelas en annan variabel, säg <math> \, y \, </math> bildas en <strong><span style="color:red">polynomfunktion</span></strong>. I Matte 1-kursen hade vi bara linjära eller 1:a gradsfunktioner av typ:
+
När ett polynom tilldelas en annan variabel, säg <math> \, y \, </math> bildas en <strong><span style="color:red">polynomfunktion</span></strong>. I Matte 1-kursen hade vi bara linjära eller 1:a gradsfunktioner av typ<span style="color:black">:</span>
  
 
:::<math> y = 4\,x + 12 </math>  
 
:::<math> y = 4\,x + 12 </math>  
  
Till höger om likhetstecknet står ett polynom där <math> \, x \, </math> förekommer som 1:a gradspotens dvs med exponenten <math> \, 1 \, </math>. Därför kallas <math> \, 4\,x \, </math> polynomets linjära term. Polynomets konstanta term är <math> \, 12 </math>. Grafen till denna 1:a gradsfunktion är en rät linje. I Matte 2-kursen gick vi ett steg vidare och sysslade med 2:a gradsfunktioner av typ:
+
Till höger om likhetstecknet står ett polynom där <math> \, x \, </math> förekommer som 1:a gradspotens dvs med exponenten <math> \, 1 \, </math>. Därför kallas <math> \, 4\,x \, </math> polynomets linjära term. Polynomets konstanta term är <math> \, 12 </math>. Grafen till denna 1:a gradsfunktion är en rät linje. I Matte 2-kursen gick vi ett steg vidare och sysslade med 2:a gradsfunktioner av typ<span style="color:black">:</span>
  
 
:::<math> y = 3\,x^2 + 5\,x - 16 </math>  
 
:::<math> y = 3\,x^2 + 5\,x - 16 </math>  
  
 
Här är graden <math> \, 2 </math>. Den kvadratiska termen är <math> \, 3\,x^2 \, </math>, den linjära termen <math> \, 5\,x\, </math> och den konstanta termen <math> \, -16 </math>. Grafen till denna 2:a gradfunktion är en parabel. Dessa funktioner kallas polynomfunktioner därför att uttrycken till höger om likhetstecken är polynom, dvs summor av termer där exponenterna till <math> \, x</math>-potenserna är positiva heltal eller <math> \, 0 </math>. I Matte 3-kursen ska vi nu lära oss att hantera även polynom av högre grad än <math> \, 2 </math>.
 
Här är graden <math> \, 2 </math>. Den kvadratiska termen är <math> \, 3\,x^2 \, </math>, den linjära termen <math> \, 5\,x\, </math> och den konstanta termen <math> \, -16 </math>. Grafen till denna 2:a gradfunktion är en parabel. Dessa funktioner kallas polynomfunktioner därför att uttrycken till höger om likhetstecken är polynom, dvs summor av termer där exponenterna till <math> \, x</math>-potenserna är positiva heltal eller <math> \, 0 </math>. I Matte 3-kursen ska vi nu lära oss att hantera även polynom av högre grad än <math> \, 2 </math>.
</div> <!-- tolv2 -->
+
</big>
  
  
Rad 163: Rad 163:
 
Den har framför allt fler minima, maxima och nollställen.
 
Den har framför allt fler minima, maxima och nollställen.
  
Funktionens fyra nollställen är identiska med lösningarna till 4:e gradsekvationen:
+
Funktionens fyra nollställen är identiska med lösningarna till 4:e gradsekvationen<span style="color:black">:</span>
  
 
:::<math> x^4 - 29\;x^2 + 100 = 0 </math>
 
:::<math> x^4 - 29\;x^2 + 100 = 0 </math>
Rad 174: Rad 174:
  
  
== <b><span style="color:#931136">Chebyshevpolynom <math>-</math> en familj av högre grads polynomfunktioner</span></b> ==
+
== <b><span style="color:#931136">En familj av högre grads polynomfunktioner</span></b> ==
<div class="tolv"> <!-- tolv3 -->
+
<big>
Ett polynoms grad är ett mått på dess komplexitet. För att se hur komplexiteten växer med graden ska vi titta på följande sex polynom vars grafer är ritade i samma koordinatsystem. Man ser att kurvorna svänger oftare och får fler maxima/minima ju högre deras grad är:
+
Ett polynoms grad är ett mått på dess komplexitet: Ju högre grad, desto oftare svänger kurvorna och desto fler maxima/minima har de. Här ser man sex polynom vars grafer är ritade i samma koordinatsystem:
  
 
<table>
 
<table>
 
<tr>
 
<tr>
 
   <td> &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; [[Image: Chebyshev_Polyn_2nd Formler.jpg]]</td>
 
   <td> &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; [[Image: Chebyshev_Polyn_2nd Formler.jpg]]</td>
   <td> &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; [[Image: Chebyshev_Polyn_2nd_60a.jpg]]</td>
+
   <td> &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; &nbsp;  &nbsp; [[Image: Chebyshev_Polyn_2nd_60.jpg]]</td>
 
</tr>
 
</tr>
 
</table>
 
</table>
 +
Dessa polynom kallas för [http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html <b><span style="color:blue">Chebyshevpolynom</span></b>] efter den ryske matematikern [http://en.wikipedia.org/wiki/Pafnuty_Chebyshev <b><span style="color:blue">Chebyshev</span></b>] som definierade dem 1854 med följande s.k.
 +
</big>
 +
=== <b><span style="color:#931136">Rekursionsformel</span></b> ===
  
Polynomen <math>U_n(x)\,</math> bildar en familj eller följd av polynom där varje polynom har ett [[1.1_Polynom#Allm.C3.A4n_definition|<strong><span style="color:blue">index</span></strong>]] <math> \, n \,</math> som samtidigt är polynomets grad.
+
<div class="border-divblue">
 
+
De nedsänkta indexen <math>_0,\,_1,\,_2,\,_3,\,_4,\,_5</math> i beteckningarna <math>U_0, U_1, U_2, U_3, U_4, U_5\,</math> används här både för att relatera indexet till polynomets grad och kunna sedan (några rader längre fram) skriva en formel för dessa polynom som kommer att visa hur de hänger ihop som en familj.
+
 
+
Dessa polynom kallas efter den ryske matematikern [http://en.wikipedia.org/wiki/Pafnuty_Chebyshev <strong><span style="color:blue">Chebyshev</span></strong>] som presenterade dem 1854. De är relaterade till varandra med följande <strong><span style="color:red">rekursionsformel</span></strong>:
+
 
+
<div class="border-div2">
+
 
<math> U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... </math>
 
<math> U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... </math>
  
Rad 197: Rad 194:
 
</div>
 
</div>
  
Denna formel ger oss möjligheten att ta fram [http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html <strong><span style="color:blue">Chebyshevpolynomen</span></strong>] rekursivt (successivt). Detta betyder att vi kan ställa upp ett polynom med hjälp av de två föregående. De första två Chebyshevpolynomen <math> \, U_0, \, U_1 \, </math> är explicit angivna (i den andra raden). Det tredje Chebyshevpolynomet <math>U_2\,</math> får man genom att sätta in <math> \, U_0, \, U_1 \,</math> i högerledet av rekursionsformeln (i den första raden). Det fjärde Chebyshevpolynomet <math> \, U_3 \, </math> får man genom att sätta in <math> \, U_1, \, U_2 \, </math> i högerledet osv.
 
  
Alla Chebyshevpolynom definieras och genereras av rekursionsformeln ovan därför att de kan beräknas utgående från de två första. Ett exempel visas nedan.
+
<div class="exempel">
</div> <!-- tolv3 -->
+
=== <b><span style="color:#931136">Användning av rekursionsformeln</span></b> ===
 
+
<div class="exempel"> <!-- exempelx -->
+
=== <b><span style="color:#931136">Exempel på beräkning av Chebyshevpolynom</span></b> ===
+
 
<big>
 
<big>
 
Ställ upp de Chebyshevpolynomen <math> \, U_2, \, U_3, \, U_4\,</math> med hjälp av de två första <math> \, U_0, \, U_1 </math>.
 
Ställ upp de Chebyshevpolynomen <math> \, U_2, \, U_3, \, U_4\,</math> med hjälp av de två första <math> \, U_0, \, U_1 </math>.
Rad 211: Rad 204:
 
::<math> U_1(x) = \underline{2\,x} </math>
 
::<math> U_1(x) = \underline{2\,x} </math>
  
För <math>n = 2\,</math> ger rekursionsformeln:
+
För <math>n = 2\,</math> ger rekursionsformeln<span style="color:black">:</span>
  
 
::<math> U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} </math>
 
::<math> U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} </math>
  
Sedan kan vi få fram <math> U_3(x) </math> genom att att sätta in n = 3 i rekursionsformeln:
+
Sedan kan vi få fram <math> U_3(x) </math> genom att att sätta in n = 3 i rekursionsformeln<span style="color:black">:</span>
  
 
::<math> U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} </math>
 
::<math> U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} </math>
  
För <math>n = 4\,</math> ger rekursionsformeln <math> U_4(x) </math> osv.:
+
För <math>n = 4\,</math> ger rekursionsformeln <math> U_4(x) </math> osv.<span style="color:black">:</span>
  
 
::<math> U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} </math>
 
::<math> U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} </math>
</big></div> <!-- exempelx -->
+
</big></div>
  
<div class="tolv"> <!-- tolv3a -->
+
 
Förfarandet är rekursivt eftersom man ställer upp nästa polynom med hjälp av de två föregående. [[1.1_Polynom#Att_r.C3.A4kna_med_polynom|<strong><span style="color:blue">Att räkna med polynom</span></strong>]] lärde vi oss i genomgången av polynom.
+
<big>
</div class="tolv"> <!-- tolv3a -->
+
De nedsänkta [[1.1_Polynom#Allm.C3.A4n_definition|<b><span style="color:blue">indexen</span></b>]] <math>_0,\,_1,\,_2,\,_3,\,_4,\,_5</math> i beteckningarna <math>U_0, U_1, U_2, U_3, U_4, U_5\,</math> används både för att relatera indexet till polynomets grad och kunna definiera dem med rekursionsformeln.
 +
 
 +
<b><span style="color:red">Rekursion</span></b> är ett koncept som används för att få fram resultat genom <b><span style="color:red">successiv upprepning</span></b> av beräkningar.
 +
 
 +
Rekursionsformeln ger oss möjligheten att ställa upp ett Chebyshevpolynom med hjälp av de två föregående. De första två Chebyshevpolynomen <math> \, U_0, \, U_1 \, </math> är explicit angivna i rekursionsformelns andra rad. Det tredje Chebyshevpolynomet <math>U_2\,</math> får man genom att sätta in <math> \, U_0, \, U_1 \,</math> i rekursionsformelns högerled. Det fjärde Chebyshevpolynomet <math> \, U_3 \, </math> får man genom att sätta in <math> \, U_1, \, U_2 \, </math> i högerledet. <math>U_4\,</math> får man genom att sätta in <math> \, U_2, \, U_3 \,</math> i högerledet osv.
 +
</big>
  
  
Rad 244: Rad 242:
 
:::::<math> \; Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 </math>
 
:::::<math> \; Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 </math>
  
<span style="color:red">är lika med varandra</span> om de har samma grad och om alla deras motsvarande koefficienter, dvs om:
+
<span style="color:red">är lika med varandra</span> om de har samma grad och om alla deras motsvarande koefficienter, dvs om<span style="color:black">:</span>
  
 
:::::<math> \; a_n = b_n, \qquad a_{n-1} = b_{n-1}, \qquad \ldots \qquad a_1 = b_1, \qquad a_0 = b_0 </math>
 
:::::<math> \; a_n = b_n, \qquad a_{n-1} = b_{n-1}, \qquad \ldots \qquad a_1 = b_1, \qquad a_0 = b_0 </math>
Rad 254: Rad 252:
 
=== <span style="color:#931136">Exempel 1</span> ===
 
=== <span style="color:#931136">Exempel 1</span> ===
  
Följande två polynom är givna där <math> a\, </math> och <math> b\, </math> är konstanter medan <math> x\, </math> är polynomens oberoende variabel:
+
Följande två polynom är givna där <math> a\, </math> och <math> b\, </math> är konstanter medan <math> x\, </math> är polynomens oberoende variabel<span style="color:black">:</span>
  
 
::<math> P(x) = a \cdot x + 2\,a + b </math>
 
::<math> P(x) = a \cdot x + 2\,a + b </math>
Rad 264: Rad 262:
 
'''Lösning:'''
 
'''Lösning:'''
  
Vi skriver <math> P(x),\, </math> och <math> Q(x)\, </math> så att vi lättare kan se motsvarande koefficienter:
+
Vi skriver <math> P(x),\, </math> och <math> Q(x)\, </math> så att vi lättare kan se motsvarande koefficienter<span style="color:black">:</span>
  
 
::<math> P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 </math>
 
::<math> P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 </math>
Rad 270: Rad 268:
 
::<math> Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 </math>
 
::<math> Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 </math>
  
Jämförelse av koefficienterna till <math> x^1\, </math> leder till:
+
Jämförelse av koefficienterna till <math> x^1\, </math> leder till<span style="color:black">:</span>
  
 
::<math> a = 2\,</math>
 
::<math> a = 2\,</math>
  
Jämförelse av koefficienterna till <math> x^0 \,</math> leder till:
+
Jämförelse av koefficienterna till <math> x^0 \,</math> leder till<span style="color:black">:</span>
  
 
::<math> 2\,a + b = 1\!\,</math>  
 
::<math> 2\,a + b = 1\!\,</math>  
Rad 280: Rad 278:
 
Sätter man in <math> a = 2\, </math> i denna relation får man <math> b = -3\, </math>.
 
Sätter man in <math> a = 2\, </math> i denna relation får man <math> b = -3\, </math>.
  
Polynomen <math> P(x)\, </math> och <math> Q(x)\, </math> är lika med varandra för:
+
Polynomen <math> P(x)\, </math> och <math> Q(x)\, </math> är lika med varandra för<span style="color:black">:</span>
  
 
::<math> a = 2\, </math>  
 
::<math> a = 2\, </math>  
Rad 291: Rad 289:
 
=== <span style="color:#931136">Exempel 2</span> ===
 
=== <span style="color:#931136">Exempel 2</span> ===
  
Följande 3:e gradspolynom är givet
+
Följande 3:e gradspolynom är givet<span style="color:black">:</span>
  
 
::<math> P(x) = x^3 + 4\,x^2 + x - 26 </math>
 
::<math> P(x) = x^3 + 4\,x^2 + x - 26 </math>
  
Hitta ett 2:a gradspolynom <math> Q(x)\, </math> så att:
+
Hitta ett 2:a gradspolynom <math> Q(x)\, </math> så att<span style="color:black">:</span>
  
 
::<math> Q(x)\cdot (x-2) = P(x) </math>
 
::<math> Q(x)\cdot (x-2) = P(x) </math>
Rad 301: Rad 299:
 
'''Lösning:'''
 
'''Lösning:'''
  
Det 2:a gradspolynomet <math> Q(x)\, </math> kan skrivas så här:
+
Det 2:a gradspolynomet <math> Q(x)\, </math> kan skrivas så här<span style="color:black">:</span>
  
 
::<math> Q(x) = a\,x^2 + b\,x + c </math>  
 
::<math> Q(x) = a\,x^2 + b\,x + c </math>  
  
Vi bestämmer koefficienterna <math> a\, , \, b\, </math> och <math> c\, </math> så att <math> {\color{White} x} Q(x)\cdot (x-2) \, = \, P(x) </math>
+
Vi bestämmer koefficienterna <math> a\, , \, b\, </math> och <math> c\, </math> så att <math> {\color{White} x} Q(x)\cdot (x-2) \, = \, P(x) </math><span style="color:black">:</span>
  
 
::<math>\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\
 
::<math>\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\
Rad 314: Rad 312:
 
\end{array} </math>
 
\end{array} </math>
  
Jämförelse av koefficienterna till <math> x^3 </math>-termen ger:
+
Jämförelse av koefficienterna till <math> x^3 </math>-termen ger<span style="color:black">:</span>
  
 
::::<math> a = 1 </math>
 
::::<math> a = 1 </math>
  
Jämförelse av koefficienterna till <math> x^2 </math>-termen ger:
+
Jämförelse av koefficienterna till <math> x^2 </math>-termen ger<span style="color:black">:</span>
  
 
::<math>\begin{align} -2\,a + b    & = 4  \\
 
::<math>\begin{align} -2\,a + b    & = 4  \\
Rad 326: Rad 324:
 
         \end{align} </math>
 
         \end{align} </math>
  
Jämförelse av koefficienterna till <math> x^1 </math>-termen ger:
+
Jämförelse av koefficienterna till <math> x^1 </math>-termen ger<span style="color:black">:</span>
  
 
::<math>\begin{align} -2\,b + c & = 1  \\
 
::<math>\begin{align} -2\,b + c & = 1  \\
Rad 334: Rad 332:
 
         \end{align} </math>
 
         \end{align} </math>
  
Jämförelse av koefficienterna till <math> x^0 \, </math>-termen bekräftar värdet på <math> c \, </math>:
+
Jämförelse av koefficienterna till <math> x^0 \, </math>-termen bekräftar värdet på <math> c \, </math><span style="color:black">:</span>
  
 
::<math>\begin{align} - 2\,c & = - 26  \\
 
::<math>\begin{align} - 2\,c & = - 26  \\
Rad 340: Rad 338:
 
         \end{align} </math>
 
         \end{align} </math>
  
Vi får <math> a = 1\, , \, b = 6\, </math> och <math> c = 13\, </math> och därmed:
+
Vi får <math> a = 1\, , \, b = 6\, </math> och <math> c = 13\, </math> och därmed<span style="color:black">:</span>
  
 
::<math> Q(x) = x^2 + 6 \, x + 13 </math>
 
::<math> Q(x) = x^2 + 6 \, x + 13 </math>
Rad 361: Rad 359:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2016 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2011-2017 Math Online Sweden AB. All Rights Reserved.

Versionen från 8 juli 2017 kl. 14.38

       Repetition: Potenser & Ekvationer          Genomgång          Övningar          Fördjupning          Nästa demoavsnitt  >>      


Lektion 1 Polynom

Lektion 2 Polynom: Fördjupning

Lektion 3 Polynom: Fördjupning

Digital beräkning av nollställen

Exempel

Simhopp från 10-meterstorn

Marie tävlar i simhopp från 10-meterstorn. Hennes hopp följer en bana som beskrivs av:

\[ y = - 5\,x^2 + 4\,x + 10 \]

där \( \;\quad x \, = \, {\rm Tiden\;i\;sekunder\;efter\;hon\;lämnat\;brädan} \)

\[ y \, = \, {\rm Hennes\;höjd\;över\;vattnet\;i\;meter} \]

a)   Rita grafen till funktionen som beskriver Maries hopp i din räknare.

b)   När slår Marie i vattnet? Ange svaret med 4 decimaler.

Använd din räknares ekvationslösare för att bestämma polynomets nollställe,
dvs lösa 2:a gradsekvationen: \( \qquad - 5\,x^2 + 4\,x + 10 = 0 \)


Lösning

Beskrivningen som ges här bygger på grafräknaren TI-82 STATS, men kan med lite modifikation tillämpas på alla grafräknare.


Grafritning

a)   Rita grafen till funktionen \( \; y = - 5\,x^2 + 4\,x + 10 \; \) i din räknare.

Tryck på knappen Y= och skriv in funktionsuttrycket där markören står.

Efter inmatningen ska stå där:

Y1=(-)5X^2+4X+10

Tryck på ENTER.

Tryck på WINDOW.

Mata in följande min-/max-värden samt skala för din räknares display (WINDOW):

\[ x_{min}\, = 0 \]
\[ x_{max}\, = 2 \]
\[ y_{min}\, = 0 \]
\[ y_{max}\, = 12 \]
\[ x_{scl}\, = 1 \]
\[ y_{scl}\, = 10 \]
                       Nollstallen med grafraknare 60.jpg

Låt resten stå. Tryck på knappen GRAPH vilket borde rita grafen ovan om allt har gått bra.

Kurvans skärningspunkt med \( \, x\)-axeln borde visa det ungefärliga värdet, nämligen \( \, 1,9 \, \).

Dvs polynomets nollställe är \(\,\approx 1,9 \) eller höjden y är 0 (Marie slår i vattnet) efter \( \, \underline{x\, \approx 1,9\,\,{\rm sek}} \).


Vi kan använda detta närmevärde i nästa steg som startvärde för kalkylatorns ekvationslösare som kommer att precisera polynomets nollställe.


Ekvationslösning

b)   När slår Marie i vattnet? Lös ekvationen \( \; - 5\,x^2 + 4\,x + 10 = 0 \; \) med 4 decimalers noggrannhet.

Tryck i miniräknaren på knappen MATH.

Gå med piltangenten till Solver...

Tryck på ENTER.

Mata in polynomet där markören står så att det efteråt står följande två rader i displayen:

EQUATION SOLVER

eqn:0=(-)5X^2+4X+10

Tryck först på knappen ALPHA (orange) och sedan på SOLVE (i orange ovanpå ENTER).

Mata in startvärdet \( \, x\, \approx 1,9 \, \) som vi fick fram i a) och tryck en gång till på först ALPHA och sedan SOLVE.

Värdet \( \, x = 1,8696938456... \, \) visas i displayen vilket betyder:

Marie slår i vattnet efter \( \underline{1,8697\,\,{\rm sek}}\).


Simhopp från 10-meterstorn - del 2

Vill du veta varför vid grafritning just de min-/max-värdena samt skalan för din räknares display (WINDOW) valdes, läs här:


Polynomfunktioner av högre grad

När ett polynom tilldelas en annan variabel, säg \( \, y \, \) bildas en polynomfunktion. I Matte 1-kursen hade vi bara linjära eller 1:a gradsfunktioner av typ:

\[ y = 4\,x + 12 \]

Till höger om likhetstecknet står ett polynom där \( \, x \, \) förekommer som 1:a gradspotens dvs med exponenten \( \, 1 \, \). Därför kallas \( \, 4\,x \, \) polynomets linjära term. Polynomets konstanta term är \( \, 12 \). Grafen till denna 1:a gradsfunktion är en rät linje. I Matte 2-kursen gick vi ett steg vidare och sysslade med 2:a gradsfunktioner av typ:

\[ y = 3\,x^2 + 5\,x - 16 \]

Här är graden \( \, 2 \). Den kvadratiska termen är \( \, 3\,x^2 \, \), den linjära termen \( \, 5\,x\, \) och den konstanta termen \( \, -16 \). Grafen till denna 2:a gradfunktion är en parabel. Dessa funktioner kallas polynomfunktioner därför att uttrycken till höger om likhetstecken är polynom, dvs summor av termer där exponenterna till \( \, x\)-potenserna är positiva heltal eller \( \, 0 \). I Matte 3-kursen ska vi nu lära oss att hantera även polynom av högre grad än \( \, 2 \).


Exempel på polynomfunktion av högre grad

Vi tar som exempel följande 4:e gradspolynomfunktion:

\[ y = x^4 - 29\;x^2 + 100 \]

vars graf till höger är mer komplicerad än en parabel.

Den har framför allt fler minima, maxima och nollställen.

Funktionens fyra nollställen är identiska med lösningarna till 4:e gradsekvationen:

\[ x^4 - 29\;x^2 + 100 = 0 \]

            4-e gradspolynom 70 70.jpg


En familj av högre grads polynomfunktioner

Ett polynoms grad är ett mått på dess komplexitet: Ju högre grad, desto oftare svänger kurvorna och desto fler maxima/minima har de. Här ser man sex polynom vars grafer är ritade i samma koordinatsystem:

            Chebyshev Polyn 2nd Formler.jpg                         Fil:Chebyshev Polyn 2nd 60.jpg

Dessa polynom kallas för Chebyshevpolynom efter den ryske matematikern Chebyshev som definierade dem 1854 med följande s.k.

Rekursionsformel

\( U_n(x) = 2\,x\,\cdot\,U_{n-1}(x)\,-\,U_{n-2}(x) \qquad\qquad n = 2, 3, ... \)

\( U_0(x) = 1, \quad U_1(x) = 2\,x \)


Användning av rekursionsformeln

Ställ upp de Chebyshevpolynomen \( \, U_2, \, U_3, \, U_4\,\) med hjälp av de två första \( \, U_0, \, U_1 \).

\[ \displaystyle U_0(x) = \underline{1} \]
\[ U_1(x) = \underline{2\,x} \]

För \(n = 2\,\) ger rekursionsformeln:

\[ U_2(x) = 2\,x\,\cdot\,U_1(x)\,-\,U_0(x) = 2\,x\,\cdot\,2\,x\,-\,1 = \underline{4\,x^2\,-\,1} \]

Sedan kan vi få fram \( U_3(x) \) genom att att sätta in n = 3 i rekursionsformeln:

\[ U_3(x) = 2\,x\,\cdot\;U_2(x)\,-\,U_1(x) = 2\,x\,\cdot\,(4\,x^2\,-\,1)\,-\,2\,x = 8\,x^3\,-\,2\,x\,-\,2\,x = \underline{8\,x^3\,-\,4\,x} \]

För \(n = 4\,\) ger rekursionsformeln \( U_4(x) \) osv.:

\[ U_4(x) = 2\,x\,\cdot\,U_3(x)\,-\,U_2(x) = 2\,x\,\cdot\,(8\,x^3\,-\,4\,x)\,-\,(4\,x^2\,-\,1) = 16\,x^4\,-\,8\,x^2\,-\,4\,x^2\,+\,1 = \underline{16\,x^4\,-\,12\,x^2\,+\,1} \]


De nedsänkta indexen \(_0,\,_1,\,_2,\,_3,\,_4,\,_5\) i beteckningarna \(U_0, U_1, U_2, U_3, U_4, U_5\,\) används både för att relatera indexet till polynomets grad och kunna definiera dem med rekursionsformeln.

Rekursion är ett koncept som används för att få fram resultat genom successiv upprepning av beräkningar.

Rekursionsformeln ger oss möjligheten att ställa upp ett Chebyshevpolynom med hjälp av de två föregående. De första två Chebyshevpolynomen \( \, U_0, \, U_1 \, \) är explicit angivna i rekursionsformelns andra rad. Det tredje Chebyshevpolynomet \(U_2\,\) får man genom att sätta in \( \, U_0, \, U_1 \,\) i rekursionsformelns högerled. Det fjärde Chebyshevpolynomet \( \, U_3 \, \) får man genom att sätta in \( \, U_1, \, U_2 \, \) i högerledet. \(U_4\,\) får man genom att sätta in \( \, U_2, \, U_3 \,\) i högerledet osv.


Jämförelse av koefficienter

Jämförelse av koefficienter är en teknik eller en metod som vi kommer att använda för att lösa högre gradsekvationer genom att faktorisera polynom av högre grad än 2, se övningarna 10-12. Metoden bygger på begreppet likhet mellan polynom.


Definition: \( \quad \) Två polynom

\[ \; P(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \quad \ldots \quad + a_1 \cdot x + a_0 \]
\[ \; Q(x) = b_n \cdot x^n + b_{n-1} \cdot x^{n-1} + \quad \ldots \quad + b_1 \cdot x + b_0 \]

är lika med varandra om de har samma grad och om alla deras motsvarande koefficienter, dvs om:

\[ \; a_n = b_n, \qquad a_{n-1} = b_{n-1}, \qquad \ldots \qquad a_1 = b_1, \qquad a_0 = b_0 \]


Exempel 1

Följande två polynom är givna där \( a\, \) och \( b\, \) är konstanter medan \( x\, \) är polynomens oberoende variabel:

\[ P(x) = a \cdot x + 2\,a + b \]
\[ Q(x) = 2\,x + 1\!\, \]

För vilka värden på \( a\, \) och \( b\, \) är de två polynomen lika med varandra?

Lösning:

Vi skriver \( P(x),\, \) och \( Q(x)\, \) så att vi lättare kan se motsvarande koefficienter:

\[ P(x) = a \cdot x^1 + (2\,a + b) \cdot x^0 \]
\[ Q(x) = 2 \cdot x^1 + \quad\;\; 1 \quad\;\; \cdot x^0 \]

Jämförelse av koefficienterna till \( x^1\, \) leder till:

\[ a = 2\,\]

Jämförelse av koefficienterna till \( x^0 \,\) leder till:

\[ 2\,a + b = 1\!\,\]

Sätter man in \( a = 2\, \) i denna relation får man \( b = -3\, \).

Polynomen \( P(x)\, \) och \( Q(x)\, \) är lika med varandra för:

\[ a = 2\, \]
\[ b = -3\, \]


Exempel 2

Följande 3:e gradspolynom är givet:

\[ P(x) = x^3 + 4\,x^2 + x - 26 \]

Hitta ett 2:a gradspolynom \( Q(x)\, \) så att:

\[ Q(x)\cdot (x-2) = P(x) \]

Lösning:

Det 2:a gradspolynomet \( Q(x)\, \) kan skrivas så här:

\[ Q(x) = a\,x^2 + b\,x + c \]

Vi bestämmer koefficienterna \( a\, , \, b\, \) och \( c\, \) så att \( {\color{White} x} Q(x)\cdot (x-2) \, = \, P(x) \):

\[\begin{array}{rclc} Q(x) \cdot (x - 2) & = & (a\,x^2 + b\,x + c)\cdot (x - 2) & = \\ & = & a\,x^3 - 2\,a\,x^2 + b\,x^2 - 2\,b\,x + c\,x - 2\,c & = \\ & = & a\,x^3 + (-2\,a + b)\,x^2 + (-2\,b + c)\,x - 2\,c & = \\ & = & a \cdot x^3 + (-2\,a + b) \cdot x^2 + (-2\,b + c) \cdot x - 2\,c \cdot x^0 & \\ P(x) & = & 1 \cdot x^3 + \quad\;\;\;\;4 \quad\;\; \cdot x^2 + \quad\;\;\;\,1 \quad\;\; \cdot x - 26 \cdot x^0 \end{array} \]

Jämförelse av koefficienterna till \( x^3 \)-termen ger:

\[ a = 1 \]

Jämförelse av koefficienterna till \( x^2 \)-termen ger:

\[\begin{align} -2\,a + b & = 4 \\ -2\cdot 1 + b & = 4 \\ - 2 + b & = 4 \\ b & = 6 \\ \end{align} \]

Jämförelse av koefficienterna till \( x^1 \)-termen ger:

\[\begin{align} -2\,b + c & = 1 \\ -2\cdot 6 + c & = 1 \\ -12 + c & = 1 \\ c & = 13 \\ \end{align} \]

Jämförelse av koefficienterna till \( x^0 \, \)-termen bekräftar värdet på \( c \, \):

\[\begin{align} - 2\,c & = - 26 \\ c & = 13 \\ \end{align} \]

Vi får \( a = 1\, , \, b = 6\, \) och \( c = 13\, \) och därmed:

\[ Q(x) = x^2 + 6 \, x + 13 \]


Anmärkningar

  • I litteraturen förekommer även ett annat namn för den metod som beskrevs ovan. Istället för jämförelse av koefficienter som vi använder pratar man om metoden med obestämda koefficienter (eng.: the method of undetermined coefficients). Med obestämda koefficienter menar man den ansats som man i början gör med obestämda koefficienter som man sedan bestämmer under metodens gång.
  • I några kursböcker behandlas polynomdivision istället för jämförelse av koefficienter, för att åstadkomma faktorisering av högre gradspolynom. Vi menar att det algebraiskt är besvärligare med polynomdivision. Jämförelse av koefficienter åstadkommer samma sak med mindre arbete och ger dessutom mer insikt i polynomens struktur.





Copyright © 2011-2017 Math Online Sweden AB. All Rights Reserved.