Skillnad mellan versioner av "1.1 Övningar till Tal"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 12: | Rad 12: | ||
− | <div class=" | + | <div class="ovn"> |
== <b><span style="color:#931136">Övning 1</span></b> == | == <b><span style="color:#931136">Övning 1</span></b> == | ||
Rad 24: | Rad 24: | ||
== <b><span style="color:#931136">Övning 2</span></b> == | == <b><span style="color:#931136">Övning 2</span></b> == | ||
− | <div class=" | + | <div class="ovning"> |
Kasta om siffrorna <math> \, 2 \, </math> och <math> \, 6 \, </math> i talet <math> \, 6\,542 \, </math>. | Kasta om siffrorna <math> \, 2 \, </math> och <math> \, 6 \, </math> i talet <math> \, 6\,542 \, </math>. | ||
Rad 33: | Rad 33: | ||
− | <div class=" | + | <div class="ovn"> |
== <b><span style="color:#931136">Övning 3</span></b> == | == <b><span style="color:#931136">Övning 3</span></b> == | ||
Bilda med siffrorna <math> \, 3,\,6,\,1 \, </math> och <math> \, 4 \, </math> ett fyrsiffrigt tal så att det blir så stort som möjligt. | Bilda med siffrorna <math> \, 3,\,6,\,1 \, </math> och <math> \, 4 \, </math> ett fyrsiffrigt tal så att det blir så stort som möjligt. |
Versionen från 2 maj 2015 kl. 16.04
Genomgång | Övningar | Nästa avsnitt --> |
E-övningar: 1-6
Övning 1
Talet \( \, 5\,678 \, \) är givet.
a) Vilket värde har siffran \( \, 6 \, \) i talet ovan.
b) Hur ändras talet \( \, 5\,678\):s värde om siffran \( \, 6 \, \) byts ut mot \( \, 4 \, \)?
Övning 2
Kasta om siffrorna \( \, 2 \, \) och \( \, 6 \, \) i talet \( \, 6\,542 \, \).
a) Blir talet efteråt större eller mindre?
b) Hur stor är ändringen?
Övning 3
Bilda med siffrorna \( \, 3,\,6,\,1 \, \) och \( \, 4 \, \) ett fyrsiffrigt tal så att det blir så stort som möjligt.
Övning 4
Talet \( 20\,136 \, \) är givet. Ange talets tusental.
Övning 5
Ange talet tio tusen fem med siffror.
Övning 6
Skriv upp det störst möjliga åttasiffriga talet och ange det i ord.
C-övningar: 7-9
Övning 7
Hur många olika möjligheter finns det att kombinera siffrorna \( \, 2,\,6 \, \) och \( \, 8 \, \) till ett tresiffrigt tal utan att upprepa en siffra i något tal?
Övning 8
När Lisa efter sommarlovet kommer till skolan har hon glömt skolans portkod. Men hon kommer ihåg att den började med \( \, 2 \, \) och att resten bestod av de tre siffrorna \( \, 4,\,7 \, \) och \( \, 9 \, \) och att ingen siffra förekom två gånger.
Vilka kombinationer måste hon maximalt prova för att komma in?
Använd det du lärde dig i övning 7.
Övning 9
Kasta om siffrorna i talet \( \, 8\,239 \, \) ska så att man får ett fyrasiffrigt tal som är så nära \( \, 3\,000 \, \) som möjligt.
A-övningar: 10-11
Övning 10
Hitta det minsta femsiffriga tal vars tiotal är dubbelt så stor som dess tusental. Dessutom ska det sökta talet inte ändra sitt värde om man kastar om hundratalet med entalet.
Övning 11
Ange talet \( \, 24\,391 \, \) som en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) multiplicerad med \( \, 10\)-potenser".
Copyright © 2011-2015 Math Online Sweden AB. All Rights Reserved.