Skillnad mellan versioner av "1.1 Övningar till Tal"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 20: Rad 20:
 
b) &nbsp; Hur ändras talet <math> \, 5\,678</math>:s värde om siffran <math> \, 6 \, </math> byts ut mot <math> \, 4 \, </math>?
 
b) &nbsp; Hur ändras talet <math> \, 5\,678</math>:s värde om siffran <math> \, 6 \, </math> byts ut mot <math> \, 4 \, </math>?
 
</div>{{#NAVCONTENT:Svar 1a|1_1.1 Svar 1a|Lösning 1a|1_1.1 Lösning 1a|Svar 1b|1_1.1 Svar 1b|Lösning 1b|1_1.1 Lösning 1b}}
 
</div>{{#NAVCONTENT:Svar 1a|1_1.1 Svar 1a|Lösning 1a|1_1.1 Lösning 1a|Svar 1b|1_1.1 Svar 1b|Lösning 1b|1_1.1 Lösning 1b}}
 
  
 
== Övning 2 ==
 
== Övning 2 ==
Rad 30: Rad 29:
 
b) &nbsp; Hur stor är ändringen?
 
b) &nbsp; Hur stor är ändringen?
 
</div>{{#NAVCONTENT:Svar 2a|1_1.1 Svar 2a|Lösning 2a|1_1.1 Lösning 2a|Svar 2b|1_1.1 Svar 2b|Lösning 2b|1_1.1 Lösning 2b}}
 
</div>{{#NAVCONTENT:Svar 2a|1_1.1 Svar 2a|Lösning 2a|1_1.1 Lösning 2a|Svar 2b|1_1.1 Svar 2b|Lösning 2b|1_1.1 Lösning 2b}}
 
  
 
== Övning 3 ==
 
== Övning 3 ==

Versionen från 16 mars 2015 kl. 14.48

       Teori          Övningar          Nästa avsnitt -->      


E-övningar: 1-6


Övning 1

Talet \( \, 5\,678 \, \) är givet.

a)   Vilket värde har siffran \( \, 6 \, \) i talet ovan.

b)   Hur ändras talet \( \, 5\,678\):s värde om siffran \( \, 6 \, \) byts ut mot \( \, 4 \, \)?

Övning 2

Kasta om siffrorna \( \, 2 \, \) och \( \, 6 \, \) i talet \( \, 6\,542 \, \).

a)   Blir talet efteråt större eller mindre?

b)   Hur stor är ändringen?

Övning 3

Bilda med siffrorna \( \, 3,\,6,\,1 \, \) och \( \, 4 \, \) ett fyrsiffrigt tal så att det blir så stort som möjligt.

Övning 4

Talet \( 20\,136 \, \) är givet. Ange talets tusental.

Övning 5

Ange talet tio tusen fem med siffror.

Övning 6

Skriv upp det störst möjliga åttasiffriga talet och ange det i ord.


C-övningar: 7-9


Övning 7

Hur många olika möjligheter finns det att kombinera siffrorna \( \, 2,\,6 \, \) och \( \, 8 \, \) till ett tresiffrigt tal utan att upprepa en siffra i något tal?

Övning 8

När Lisa efter sommarlovet kommer till skolan har hon glömt skolans portkod. Men hon kommer ihåg att den började med \( \, 2 \, \) och att resten bestod av de tre siffrorna \( \, 4,\,7 \, \) och \( \, 9 \, \) och att ingen siffra förekom två gånger.

Vilka kombinationer måste hon maximalt prova för att komma in?

Använd det du lärde dig i övning 7.

Övning 9

Kasta om siffrorna i talet \( \, 8\,239 \, \) ska så att man får ett fyrasiffrigt tal som är så nära \( \, 3\,000 \, \) som möjligt.


A-övningar: 10-11


Övning 10

Hitta det minsta femsiffriga tal vars tiotal är dubbelt så stor som dess tusental. Dessutom ska det sökta talet inte ändra sitt värde om man kastar om hundratalet med entalet.

Övning 11

Ange talet \( \, 24\,391 \, \) som en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) multiplicerad med \( \, 10\)-potenser".






Copyright © 2011-2015 Taifun Alishenas. All Rights Reserved.