Skillnad mellan versioner av "2.2 Genomsnittlig förändringshastighet"

Från Mathonline
Hoppa till: navigering, sök
m (Begreppet)
m
Rad 32: Rad 32:
 
::::<math> {\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h} </math>
 
::::<math> {\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h} </math>
  
----
+
Om vi kommer ihåg hur begreppet <span style="color:red">lutning</span> var definierat i Matte B-kursen kan vi se att uttrycket ovan är inget annat än lutningen till den räta linjen som ersätter kurvan <math> y = f\,(x) </math> i det betraktade intervallet.
  
Det alternativa sättet att lösa ekvationen <math> x^3 = 8\, </math> visar att rotdragning kan även uppfattas och skrivas som <span style="color:red">exponentiering med bråktalsexponenter</span>. För att förstå detta måste man känna till potenslagarna som behandlas nedan. Dessa gäller även för exponenter som är negativa eller bråktal, även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter.
+
== Exempel 1 ==
 
+
== Potenslagarna ==
+
  
 
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> x\, </math> och <math> y\, </math> vilka rationella tal som helst och <math> m,\,n </math> heltal (<math> n\neq 0 </math>), med exempel till höger:
 
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> x\, </math> och <math> y\, </math> vilka rationella tal som helst och <math> m,\,n </math> heltal (<math> n\neq 0 </math>), med exempel till höger:

Versionen från 30 april 2011 kl. 15.07

       Teori          Övningar      


Begreppet

Givet:

Funktionen \( y \, = \, f\,(x) \) i form av en formel, tabell eller graf.
Något intervall på \( x\, \)-axeln\[ x_1 \,\leq\, x \,\leq\, x_2 \] dvs ett intervall med givna gränser \( x_1\, \) och \( x_2\, \).

Sökt:

Funktionens genomsnittliga förändringshastigheten i detta intervall dvs:
\[ {\Delta y \over \Delta x} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; {f(x_2) \, - \, f(x_1) \over x_2 - x_1} \]

Om vi inför den nya beteckningen:

\[\begin{align} h & = x_2 - x_1 \qquad & | \; + \; x_1 \\ x_1 + h & = x_2 \\ \end{align}\]

kan funktionen \( y = f\,(x) \):s genomsnittliga förändringshastighet i intervallet \( x_1 \,\leq\, x \,\leq\, x_1 + h \) definieras som:

\[ {\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h} \]

Om vi kommer ihåg hur begreppet lutning var definierat i Matte B-kursen kan vi se att uttrycket ovan är inget annat än lutningen till den räta linjen som ersätter kurvan \( y = f\,(x) \) i det betraktade intervallet.

Exempel 1

Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( x\, \) och \( y\, \) vilka rationella tal som helst och \( m,\,n \) heltal (\( n\neq 0 \)), med exempel till höger: