Skillnad mellan versioner av "Ekvationer"
Taifun (Diskussion | bidrag) m (→Den falska roten) |
Taifun (Diskussion | bidrag) m |
||
(162 mellanliggande versioner av samma användare visas inte) | |||
Rad 1: | Rad 1: | ||
+ | __NOTOC__ | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
− | {{Selected tab|[[ | + | {{Not selected tab|[[Repetitioner från Matte 2| << Repetitioner]]}} |
− | {{Not selected tab|[[ | + | {{Selected tab|[[Ekvationer|Genomgång]]}} |
+ | {{Not selected tab|[[Rotekvationer och högre gradsekvationer|Rotekv.- & högre gradsekvationer]]}} | ||
+ | {{Not selected tab|[[Övningar till Rotekvationer och högre gradsekvationer|Övningar Rotekv. & högre ...]]}} | ||
+ | {{Not selected tab|[[1.1 Polynom|1:a avsnitt: Polynom >> ]]}} | ||
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
− | |||
− | < | + | == <b><span style="color:#931136">Olika typer av ekvationer</span></b> == |
+ | <div class="tolv"> <!-- tolv1 --> | ||
− | [[ | + | <table> |
+ | <tr> | ||
+ | <td> [[Image:Fig111.gif]] </td> | ||
+ | <td> <math> \qquad </math> </td> | ||
+ | <td> Ekvationer har vi lärt oss ända från grundskolan till gymnasiet. | ||
− | + | I Matte 1-kursen har vi bl.a. löst ekvationer av följande typ: | |
− | + | '''Linjära ekvationer:''' | |
− | + | ||
− | + | <math> \qquad\qquad\quad 4\,x - (3\,x + 2) = -5\,x+12 </math> | |
+ | </tr> | ||
+ | </table> | ||
+ | Sådana ekvationer kallas <b><span style="color:red">linjära</span></b> eller <b><span style="color:red">1:a gradsekvationer</span></b> eftersom obekanten <math> x\, </math> förekommer endast som 1:a gradspotens dvs med exponenten 1. <math> x\, </math> är ju samma som <math> x^1\, </math>. Högre <math> \, x</math>-potenser förekommer inte i ekvationen. | ||
− | + | I Matte 2-kursen har vi gått ett steg vidare och löst bl.a. ekvationer av följande typ: | |
− | : | + | '''Andragradsekvationer:''' <math> \qquad\qquad x^2 + 6\,x - 16 = 0 </math> |
− | Sådana ekvationer kallas <span style="color:red"> | + | Sådana ekvationer kallas icke-linjära, närmare bestämt <b><span style="color:red">kvadratiska</span></b> eller <b><span style="color:red">2:a gradsekvationer</span></b> därför att obekanten <math> x\, </math> förekommer högst som 2:a gradspotens dvs med exponenten 2 eller som <math> x^2\, </math>. Obekantens exponent är alltså avgörande för ekvationens typ och därmed för svårighetsgraden när man vill lösa ekvationen. |
− | < | + | ==== <b><span style="color:#931136">Fyra metoder för lösning av andragradsekvationer</span></b> ==== |
− | :::<math> x | + | [[1.2_Faktorisering_av_polynom#Nollproduktmetoden|<span style="color:#931136">1) Nollproduktmeoden</span>]]<span style="color:black">:</span> <math> \quad (x-3) \cdot (x-4) \, = \, 0 \quad \Rightarrow \quad x_1 = 3 \;\; </math> och <math> \; x_2 = 4 </math>. |
− | + | <span style="color:#931136">2) Kvadratrotsmetoden:</span> <math> \quad x^2 - 16 \, = \, 0 \quad \Rightarrow \quad x^2 \, = \, 16 \quad \Rightarrow \quad x_1 = 4 \;\; </math> och <math> \; x_2 = -4 </math>. | |
− | + | <span style="color:#931136">3) pq-formeln:</span> | |
+ | ---- | ||
+ | ::<b><span style="color:red">Normalformen</span></b> <math> \, x^2 + p\,x + q = 0 \, </math> till en 2:a gradsekvation kan lösas med pq-formeln<span style="color:black">:</span> | ||
− | + | <math> \qquad\qquad\qquad\qquad\qquad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math> | |
− | < | + | ---- |
+ | En annan variant är den s.k. abc-formeln till 2:a gradsekvationen <math>a\,x^2 + b\,x + c = 0\,</math> som kan skrivas om till normalform genom division med <math> \, a </math>. | ||
− | :::< | + | <span style="color:#931136">4) Vietas formler</span>. Vi behandlar här denna metod i detalj: |
+ | <small> | ||
+ | == <b><span style="color:#931136">Samband mellan ett polynoms koefficienter och dess nollställen</span></b> == | ||
+ | <big> | ||
+ | Den franske matematikern [http://en.wikipedia.org/wiki/Fran%C3%A7ois_Vi%C3%A8te <b><span style="color:blue">François Viète</span></b>] var en av de första som på <math>1500</math>-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom. | ||
− | + | ==== <b><span style="color:#931136">Uppgift:</span></b> ==== | |
+ | Ställ upp en 2:a gradsekvation vars lösningar är <math> \, x_1 = 2 \, </math> och <math> \, x_2 = 3 </math>. | ||
− | == | + | ==== <b><span style="color:#931136">Lösning:</span></b> ==== |
+ | För lösningarna <math> x_1\,</math> och <math> \, x_2\,</math> av 2:a gradsekvationen <math> \, x^2 + p\,x + q = 0 \, </math> gäller | ||
+ | </big> | ||
− | + | <table> | |
+ | <tr> <td><div class="ovnA"> | ||
+ | <b><span style="color:blue">Vietas formler:</span></b> | ||
+ | <table> | ||
+ | <tr> | ||
+ | <td><math> \boxed{\begin{align} x_1 + x_2 & = -p \\ | ||
+ | x_1 \cdot x_2 & = q | ||
+ | \end{align}} </math></td> | ||
+ | <td><math> \quad {\rm Dvs:} \quad </math></td> | ||
+ | <td><math> \begin{align} 2 + 3 & = 5 = -p \\ | ||
+ | 2 \cdot 3 & = 6 = q | ||
+ | \end{align} </math></td> | ||
+ | <td><math> \quad {\rm och:} \quad </math></td> | ||
+ | <td><math> \begin{align} p & = -5 \\ | ||
+ | q & = 6 | ||
+ | \end{align} </math></td> | ||
+ | </tr> | ||
+ | </table> | ||
− | + | Därmed blir 2:a gradsekvationen<span style="color:black">:</span> | |
− | + | ::<math> \; x^2 - 5\,x + 6 \, = \, 0 </math> | |
+ | </div></td> | ||
+ | <td><math> \qquad </math></td> | ||
+ | <td><big>Kontroll och jämförelse med p-q-formeln<span style="color:black">:</span> | ||
− | + | :::<math>\begin{array}{rcl} x^2 - 5\,x + 6 & = & 0 \\ | |
− | + | x_{1,2} & = & 2,5 \pm \sqrt{6,25 - 6} \\ | |
− | + | x_{1,2} & = & 2,5 \pm \sqrt{0,25} \\ | |
+ | x_{1,2} & = & 2,5 \pm 0,5 \\ | ||
+ | x_1 & = & 3 \\ | ||
+ | x_2 & = & 2 | ||
+ | \end{array}</math></big></td> | ||
+ | </tr> | ||
+ | </table> | ||
− | + | <big> | |
+ | Uppgiften ovan ger oss ett praktiskt verktyg i handen att bestämma polynomets nollställen med hjälp av dess koefficienter. | ||
− | + | Den är en tillämpning av följande generellt samband mellan 2:gradspolynomets koefficienter och dess nollställen: | |
− | < | + | == <small><b><span style="color:#931136">Vietas formler</span></b></small> == |
− | < | + | <div class="border-divblue"> |
− | : | + | Om 2:gradsekvationen <math> \; x^2 + p\,x + q \; = \; 0 \; </math> har lösnin- |
− | + | garna <math> x_1\, </math> och <math> x_2\, </math> så gäller<span style="color:black">:</span> <math> \qquad \boxed{\begin{align} x_1 + x_2 & = -p \\ | |
+ | x_1 \cdot x_2 & = q | ||
+ | \end{align}} </math> | ||
+ | </div> | ||
− | |||
− | + | <big><b><span style="color:#931136">Bevis med p-q formeln</span></b></big> | |
− | == | + | 2:a gradsekvationen <math> \, x^2 + p\,x + q = 0\,</math> har enligt [[Ekvationer#3) pq-formeln:|<b><span style="color:blue">pq-formeln</span></b>]] lösningarna <math> \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math> |
− | + | Om vi adderar de båda lösningarna ovan får vi<span style="color:black">:</span> | |
− | + | <math> \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p</math> | |
− | |||
− | + | Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel. | |
− | + | Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi<span style="color:black">:</span> | |
− | ==== | + | <math> \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q </math> |
− | |||
− | + | Omformningen kring <math> \color{Red} = </math> sker enligt [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">konjugatregeln</span></b>]] <math> (a+b) \cdot (a-b) = a^2 - b^2 </math> om vi sätter <math> \displaystyle a = -\frac{p}{2} </math> och <math> \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math>. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | Detta bevisar Vietas andra formel. | |
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | + | <big><b><span style="color:#931136">Bevis med faktorisering av polynom och jämförelse av koefficienter</span></b></big> | |
− | + | Lösningarna <math> \, x_1\, </math> och <math> \, x_2\, </math> till 2:a gradsekvationen <math> \, x^2 + p\,x + q \, = \, 0 \, </math> är nollställena till 2:gradspolynomet<span style="color:black">:</span> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | :::::::::<math> x^2 + p\,x + q </math> | |
− | :: | + | Å andra sidan: om ett 2:gradspolynom i faktorform <math> \, (x-x_1) \cdot (x-x_2)</math> har nollställena <math> x_1\, </math> och <math> x_2\, </math> så gäller<span style="color:black">:</span> |
− | + | :::::::::<math> (x-x_1) \cdot (x-x_2) \; = \; 0 </math> | |
− | + | Därav följer<span style="color:black">:</span> <math> \qquad\qquad x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) </math> | |
− | + | Om vi nu utvecklar produkten på höger sidan kan vi skriva vidare<span style="color:black">:</span> | |
− | + | ::<math> x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) = x^2\,-\,x_2\,x\,-\,x_1\,x\,+\,x_1 \cdot x_2 = x^2\,-\,(x_1+x_2)\,x\,+\,x_1 \cdot x_2 </math> | |
− | + | En jämförelse av koefficienterna mellan polynomet <math> x^2 - (x_1+x_2)\,x + x_1 \cdot x_2 </math> (högerled) och polynomet <math> x^2 + p\,x + q </math> (vänsterled) ger: | |
− | == | + | :::::::::<math> x_1 + x_2 = -p \qquad {\rm och} \qquad x_1 \cdot x_2 = q </math> |
− | + | Om detta bevis förefaller vara mindre förståeligt än det första med pq-formeln, kan det bero på att du (beroende på kursupplägg) inte gått igenom [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">Polynom i faktorform</span></b>]] och/eller [[1.1_Fördjupning_till_Polynom#J.C3.A4mf.C3.B6relse_av_koefficienter|<b><span style="color:blue">Jämförelse av koefficienter</span></b>]]. | |
− | |||
− | + | ---- | |
+ | Vietas formler kan generaliseras till polynom av högre grad än <math>2</math> och formuleras för polynom av grad <math>n</math>. | ||
+ | ---- | ||
+ | </big> | ||
− | |||
− | + | == <b><span style="color:#931136">Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)</span></b> == | |
− | + | <big> | |
+ | Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom. Läs även om [[Ekvationer#Nackdelen_med_Vieta|<b><span style="color:blue">nackdelen med Vietas formler</span></b>]]. | ||
+ | </big> | ||
− | |||
− | + | <div class="exempel"> | |
+ | == <b><span style="color:#931136">Exempel 1:</span></b> == | ||
− | + | <big> | |
+ | Lös ekvationen <math> \quad x^2 - 7\,x + 10 \; = \; 0 </math> | ||
+ | </big> | ||
− | + | ==== <b><span style="color:#931136">Lösning:</span></b> ==== | |
− | + | <big> | |
+ | För lösningarna <math> x_1\,</math> och <math> x_2\,</math> måste enligt Vietas formler gälla<span style="color:black">:</span> | ||
− | + | :::<math> \begin{align} x_1 + x_2 & = -(-7) = 7 \\ | |
+ | x_1 \cdot x_2 & = 10 | ||
+ | \end{align}</math> | ||
− | + | Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7. | |
− | + | Med lite provande hittar man <math> \, 2 \, </math> och <math> \, 5 \, </math> eftersom <math> \, 2 + 5 = 7\, </math> och <math> \, 2 \cdot 5 = 10 </math>. | |
− | :: | + | Kontrollen bekräftar resultatet<span style="color:black">:</span> |
− | + | :::<math> 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 </math> | |
− | + | :::<math> 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 </math> | |
− | + | Har vi på det här enkla sättet hittat nollställena till polynomet <math> x^2 - 7\,x + 10 </math> kan vi faktorisera det<span style="color:black">:</span> | |
− | + | :::<math> x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) </math> | |
− | + | Utveckling av produkten på höger sidan bekräftar faktoriseringen. | |
− | + | </big></div> | |
− | |||
− | + | <div class="exempel"> | |
+ | == <b><span style="color:#931136">Exempel 2</span></b> == | ||
+ | <big> | ||
+ | Lös ekvationen <math> \quad x^2 - 8\,x + 16 \; = \; 0 </math> | ||
+ | </big> | ||
− | : | + | ==== <b><span style="color:#931136">Lösning:</span></b> ==== |
− | + | <big> | |
+ | Vietas formler ger<span style="color:black">:</span> | ||
− | + | :::<math> \begin{align} x_1 + x_2 & = -(-8) = 8 \\ | |
− | + | x_1 \cdot x_2 & = 16 | |
− | + | \end{align}</math> | |
− | + | Man hittar lösningarna <math> x_1 = 4\,</math> och <math> x_2 = 4\,</math> eftersom <math> 4 + 4 = 8\,</math> och <math> 4 \cdot 4 = 16 </math>. | |
− | + | Därför kan polynomet <math> x^2 - 8\,x + 16 </math> faktoriseras så här<span style="color:black">:</span> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | :::<math> x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 </math> | |
− | + | Den dubbla förekomsten av faktorn <math> (x-4)\,</math> ger roten, dvs lösningen <math> x = 4\,</math>, dess namn [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">dubbelrot</span></b>]]. | |
+ | </big></div> | ||
− | |||
− | + | <div class="exempel"> | |
+ | == <b><span style="color:#931136">Nackdelen med Vieta</span></b> == | ||
+ | <big> | ||
+ | En nackdel med Vietas formler är att man kan råka ut för sådana relationer mellan nollställen och koefficienter att det i praktiken blir svårt att få fram lösningarna direkt. I så fall måste man återgå till p-q formeln. Ett exempel är: | ||
− | + | :::<math> x^2 - 13\,x + 2 = 0 </math> | |
− | :: | + | Vietas formler ger<span style="color:black">:</span> |
− | + | :::<math> \begin{align} x_1 + x_2 & = -(-13) = 13 \\ | |
+ | x_1 \cdot x_2 & = 2 | ||
+ | \end{align}</math> | ||
− | + | Det är inte så enkelt att få fram lösningarna <math> x_1\, </math> och <math> x_2\, </math> ur dessa relationer. | |
− | :: | + | Med p-q formeln får man (se lösningen till [[1.3_Lösning_10b|övning 10 b)]])<span style="color:black">:</span> |
− | + | :::<math>\begin{align} x_1 & = 12,84428877 \\ | |
+ | x_2 & = 0,15571123 \\ | ||
+ | \end{align}</math> | ||
− | :: | + | I efterhand kan vi ändå verifiera Vietas formler eftersom de är generella<span style="color:black">:</span> |
− | + | ||
− | + | ||
− | + | :::<math> \begin{align} 12,84428877 + 0,15571123 & = 13 \\ | |
+ | 12,84428877 \cdot 0,15571123 & = 2 | ||
+ | \end{align}</math> | ||
+ | </big></div> | ||
+ | </small> | ||
− | |||
− | + | == <b><span style="color:#931136">Internetlänkar</span></b> == | |
+ | |||
+ | http://www.youtube.com/watch?v=V8I2_zgNRHI | ||
− | |||
http://www.matteguiden.se/matte-c/polynomfunktioner/andra-typer-av-ekvationer/#Rotekvationer | http://www.matteguiden.se/matte-c/polynomfunktioner/andra-typer-av-ekvationer/#Rotekvationer | ||
http://www.pluggakuten.se/wiki/index.php?title=Rotekvation | http://www.pluggakuten.se/wiki/index.php?title=Rotekvation | ||
− | |||
− | |||
− | |||
http://wiki.math.se/wikis/forberedandematte1/index.php/3.2_Rotekvationer | http://wiki.math.se/wikis/forberedandematte1/index.php/3.2_Rotekvationer | ||
Rad 230: | Rad 274: | ||
− | [[Matte:Copyrights|Copyright]] © | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | [[Matte:Copyrights|Copyright]] © 2020 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved. |
Nuvarande version från 16 maj 2020 kl. 13.20
<< Repetitioner | Genomgång | Rotekv.- & högre gradsekvationer | Övningar Rotekv. & högre ... | 1:a avsnitt: Polynom >> |
Olika typer av ekvationer
Sådana ekvationer kallas linjära eller 1:a gradsekvationer eftersom obekanten \( x\, \) förekommer endast som 1:a gradspotens dvs med exponenten 1. \( x\, \) är ju samma som \( x^1\, \). Högre \( \, x\)-potenser förekommer inte i ekvationen.
I Matte 2-kursen har vi gått ett steg vidare och löst bl.a. ekvationer av följande typ:
Andragradsekvationer: \( \qquad\qquad x^2 + 6\,x - 16 = 0 \)
Sådana ekvationer kallas icke-linjära, närmare bestämt kvadratiska eller 2:a gradsekvationer därför att obekanten \( x\, \) förekommer högst som 2:a gradspotens dvs med exponenten 2 eller som \( x^2\, \). Obekantens exponent är alltså avgörande för ekvationens typ och därmed för svårighetsgraden när man vill lösa ekvationen.
Fyra metoder för lösning av andragradsekvationer
1) Nollproduktmeoden: \( \quad (x-3) \cdot (x-4) \, = \, 0 \quad \Rightarrow \quad x_1 = 3 \;\; \) och \( \; x_2 = 4 \).
2) Kvadratrotsmetoden: \( \quad x^2 - 16 \, = \, 0 \quad \Rightarrow \quad x^2 \, = \, 16 \quad \Rightarrow \quad x_1 = 4 \;\; \) och \( \; x_2 = -4 \).
3) pq-formeln:
- Normalformen \( \, x^2 + p\,x + q = 0 \, \) till en 2:a gradsekvation kan lösas med pq-formeln:
\( \qquad\qquad\qquad\qquad\qquad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\)
En annan variant är den s.k. abc-formeln till 2:a gradsekvationen \(a\,x^2 + b\,x + c = 0\,\) som kan skrivas om till normalform genom division med \( \, a \).
4) Vietas formler. Vi behandlar här denna metod i detalj:
Samband mellan ett polynoms koefficienter och dess nollställen
Den franske matematikern François Viète var en av de första som på \(1500\)-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom.
Uppgift:
Ställ upp en 2:a gradsekvation vars lösningar är \( \, x_1 = 2 \, \) och \( \, x_2 = 3 \).
Lösning:
För lösningarna \( x_1\,\) och \( \, x_2\,\) av 2:a gradsekvationen \( \, x^2 + p\,x + q = 0 \, \) gäller
Vietas formler:
Därmed blir 2:a gradsekvationen:
|
\( \qquad \) | Kontroll och jämförelse med p-q-formeln:
|
Uppgiften ovan ger oss ett praktiskt verktyg i handen att bestämma polynomets nollställen med hjälp av dess koefficienter.
Den är en tillämpning av följande generellt samband mellan 2:gradspolynomets koefficienter och dess nollställen:
Vietas formler
Om 2:gradsekvationen \( \; x^2 + p\,x + q \; = \; 0 \; \) har lösnin-
garna \( x_1\, \) och \( x_2\, \) så gäller: \( \qquad \boxed{\begin{align} x_1 + x_2 & = -p \\ x_1 \cdot x_2 & = q \end{align}} \)
Bevis med p-q formeln
2:a gradsekvationen \( \, x^2 + p\,x + q = 0\,\) har enligt pq-formeln lösningarna \( \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\)
Om vi adderar de båda lösningarna ovan får vi:
\( \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p\)
Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel.
Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi:
\( \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q \)
Omformningen kring \( \color{Red} = \) sker enligt konjugatregeln \( (a+b) \cdot (a-b) = a^2 - b^2 \) om vi sätter \( \displaystyle a = -\frac{p}{2} \) och \( \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\).
Detta bevisar Vietas andra formel.
Bevis med faktorisering av polynom och jämförelse av koefficienter
Lösningarna \( \, x_1\, \) och \( \, x_2\, \) till 2:a gradsekvationen \( \, x^2 + p\,x + q \, = \, 0 \, \) är nollställena till 2:gradspolynomet:
- \[ x^2 + p\,x + q \]
Å andra sidan: om ett 2:gradspolynom i faktorform \( \, (x-x_1) \cdot (x-x_2)\) har nollställena \( x_1\, \) och \( x_2\, \) så gäller:
- \[ (x-x_1) \cdot (x-x_2) \; = \; 0 \]
Därav följer: \( \qquad\qquad x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) \)
Om vi nu utvecklar produkten på höger sidan kan vi skriva vidare:
- \[ x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) = x^2\,-\,x_2\,x\,-\,x_1\,x\,+\,x_1 \cdot x_2 = x^2\,-\,(x_1+x_2)\,x\,+\,x_1 \cdot x_2 \]
En jämförelse av koefficienterna mellan polynomet \( x^2 - (x_1+x_2)\,x + x_1 \cdot x_2 \) (högerled) och polynomet \( x^2 + p\,x + q \) (vänsterled) ger:
- \[ x_1 + x_2 = -p \qquad {\rm och} \qquad x_1 \cdot x_2 = q \]
Om detta bevis förefaller vara mindre förståeligt än det första med pq-formeln, kan det bero på att du (beroende på kursupplägg) inte gått igenom Polynom i faktorform och/eller Jämförelse av koefficienter.
Vietas formler kan generaliseras till polynom av högre grad än \(2\) och formuleras för polynom av grad \(n\).
Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)
Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom. Läs även om nackdelen med Vietas formler.
Exempel 1:
Lös ekvationen \( \quad x^2 - 7\,x + 10 \; = \; 0 \)
Lösning:
För lösningarna \( x_1\,\) och \( x_2\,\) måste enligt Vietas formler gälla:
- \[ \begin{align} x_1 + x_2 & = -(-7) = 7 \\ x_1 \cdot x_2 & = 10 \end{align}\]
Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7.
Med lite provande hittar man \( \, 2 \, \) och \( \, 5 \, \) eftersom \( \, 2 + 5 = 7\, \) och \( \, 2 \cdot 5 = 10 \).
Kontrollen bekräftar resultatet:
- \[ 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 \]
- \[ 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 \]
Har vi på det här enkla sättet hittat nollställena till polynomet \( x^2 - 7\,x + 10 \) kan vi faktorisera det:
- \[ x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) \]
Utveckling av produkten på höger sidan bekräftar faktoriseringen.
Exempel 2
Lös ekvationen \( \quad x^2 - 8\,x + 16 \; = \; 0 \)
Lösning:
Vietas formler ger:
- \[ \begin{align} x_1 + x_2 & = -(-8) = 8 \\ x_1 \cdot x_2 & = 16 \end{align}\]
Man hittar lösningarna \( x_1 = 4\,\) och \( x_2 = 4\,\) eftersom \( 4 + 4 = 8\,\) och \( 4 \cdot 4 = 16 \).
Därför kan polynomet \( x^2 - 8\,x + 16 \) faktoriseras så här:
- \[ x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 \]
Den dubbla förekomsten av faktorn \( (x-4)\,\) ger roten, dvs lösningen \( x = 4\,\), dess namn dubbelrot.
Nackdelen med Vieta
En nackdel med Vietas formler är att man kan råka ut för sådana relationer mellan nollställen och koefficienter att det i praktiken blir svårt att få fram lösningarna direkt. I så fall måste man återgå till p-q formeln. Ett exempel är:
- \[ x^2 - 13\,x + 2 = 0 \]
Vietas formler ger:
- \[ \begin{align} x_1 + x_2 & = -(-13) = 13 \\ x_1 \cdot x_2 & = 2 \end{align}\]
Det är inte så enkelt att få fram lösningarna \( x_1\, \) och \( x_2\, \) ur dessa relationer.
Med p-q formeln får man (se lösningen till övning 10 b)):
- \[\begin{align} x_1 & = 12,84428877 \\ x_2 & = 0,15571123 \\ \end{align}\]
I efterhand kan vi ändå verifiera Vietas formler eftersom de är generella:
- \[ \begin{align} 12,84428877 + 0,15571123 & = 13 \\ 12,84428877 \cdot 0,15571123 & = 2 \end{align}\]
Internetlänkar
http://www.youtube.com/watch?v=V8I2_zgNRHI
http://www.matteguiden.se/matte-c/polynomfunktioner/andra-typer-av-ekvationer/#Rotekvationer
http://www.pluggakuten.se/wiki/index.php?title=Rotekvation
http://wiki.math.se/wikis/forberedandematte1/index.php/3.2_Rotekvationer
http://wiki.math.se/wikis/sf0600_0701/index.php/3.2_Rotekvationer