Skillnad mellan versioner av "2.2 Genomsnittlig förändringshastighet"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(442 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 +
__NOTOC__
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Selected tab|[[2.2 Genomsnittlig förändringshastighet|Teori]]}}
+
{{Not selected tab|[[2.1 Introduktion till derivata| <<&nbsp;&nbsp;Förra avsnitt]]}}
 +
{{Selected tab|[[2.2 Genomsnittlig förändringshastighet|Genomgång]]}}
 
{{Not selected tab|[[2.2 Övningar till Genomsnittlig förändringshastighet|Övningar]]}}
 
{{Not selected tab|[[2.2 Övningar till Genomsnittlig förändringshastighet|Övningar]]}}
 +
{{Not selected tab|[[2.3 Gränsvärde|Nästa avsnitt&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
  
<!-- [[Media: Lektion 21 Rotekvationer.pdf|Lektion 1 Rotekvationer]] -->
+
<!-- [[Media: Lektion_13_Genomsnittlig_forandringshastigheta.pdf|<b><span style="color:blue">Lektion 13: Genomsnittlig förändringshastighet</span></b>]] -->
 +
<big>
 +
=== <b><span style="color:#931136">Tre exempel på genomsnittlig förändringshastighet</span></b> ===
 +
<div class="ovnE">
 +
<small>
 +
<div class="exempel">
 +
==== <b><span style="color:#931136">Exempel 1 Marginalskatt</span></b> ====
 +
Martins månadslön höjs från <math> \, 23\;000 \, </math> kr till <math> \, 24\;200 \, </math> kr.
  
== Begreppet ==
+
I [https://www.skatteverket.se/download/18.3152d9ac158968eb8fd2129/manadslon_tabell35.pdf <b><span style="color:blue">Skatteverkets skattetabell</span></b>] för 2017 hittar vi <math> \, 5\;579 \, </math> kr skatt för den gamla och <math> \, 5\;955 \, </math> kr skatt för den nya lönen.
  
Ett uttryck av formen <math> a^x\, </math> läses "a upphöjt till x" och kallas <span style="color:red">potens</span>. <math> a\, </math> heter <span style="color:red">basen</span> och <math> x\, </math> <span style="color:red">exponenten</span>.
+
Beräkna <b><span style="color:#931136">marginalskatten</span></b> som är den procentuella andelen av varje lönehöjning som går till skatt.
  
Om <math> x\, </math> är ett positivt heltal och <math> a\, </math> ett tal <math> \neq 0 </math> kan potensen <math> a^x\, </math> definieras som en förkortning för <math>1 \cdot</math> <span style="color:red">upprepad multiplikation</span> av <math> a\, </math> med sig själv <math> x\, </math> gånger:
+
'''Lösning:''' <math> \qquad\qquad\qquad\;\; </math> Skatten som en [[1.5_Kontinuerliga_och_diskreta_funktioner|<b><span style="color:blue">diskret funktion</span></b>]] av lönen:
::::<math> a^x = 1 \cdot \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{x\;\,\text{styck}} </math>
+
<table>
För negativa heltalexponenter kan potensen <math> a^{-x}\, </math> definieras som en förkortning för <math>1 /\,</math> <span style="color:red">upprepad division</span> av <math> a\, </math> med sig själv <math> x\, </math> gånger:
+
<tr>
::::<math> a^{-x} = 1 / \underbrace{a / a / a / \quad \ \cdots \quad / a}_{x\;\,\text{styck}} </math>
+
  <td>
Uppfattar man a som ett bråk med nämnaren 1 och ersätter man i uttrycket ovan divisionerna med "bråket" <math> {a \over 1} </math> (enligt regel) med multiplikationer med det omvända (inversa) bråket <math> {1 \over a} </math>, kan man skriva om definitionen ovan så här:
+
::{| class="wikitable"
::::<math> a^{-x} = 1 \cdot \underbrace{{1 \over a} \cdot {1 \over a} \cdot {1 \over a} \cdot \quad \cdot \cdots \quad \cdot {1 \over a}}_{x\;\,\text{styck}} = {1 \over a^x} </math>
+
|-
Vi får formeln för potenser med negativa heltalexponenter:  
+
! <math> x\, </math> || <math> y\, </math>  
::::<math> a^{-x} = {1 \over a^x} </math>
+
|-
Exempel på både positiva och negativa heltalsexponenter:
+
| align=center| <math> 23\,000 </math> ||align=center| <math> 5\,579</math>
::::<math> a^2 = a \cdot a </math>
+
|-
 +
| align=center| <math> 24\,200 </math> ||align=center| <math> 5\,955 </math>
 +
|}
 +
 
 +
 
 +
<math> \quad\;\; x \, = \,  </math> Månadslönen i kr.
 +
 
 +
<math> \quad\;\; y \, = \,  </math> Skatten i kr.
 +
</td>
 +
  <td><math> \quad </math></td>
 +
  <td>[[Image: Diskret loneSkattfkt_235.png]]</td>
 +
</tr>
 +
</table>
 +
 
 +
Skattefunktionens <b><span style="color:red">lutning</span></b>, dvs kvoten mellan skattehöjning och lönehöjning kallas för skattens <b><span style="color:red">genomsnittliga förändringshastighet</span></b>:
 +
 
 +
:::<math> {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} = {{\rm Skattehöjningen} \over {\rm Lönehöjningen}} = {5\,955 - 5\,579 \over 24\,200 - 23\,000} \; = \; {376 \over 1200} \; = \; \color{Red} {0,313}  \; = \; 31,3 \, \%</math>
 +
 
 +
I intervallet <math> \; 23\,000 \,\leq\, x \,\leq\, 24\,200 \, </math> har funktionen <math> \, y \, </math> den genomsnittliga förändringshastigheten <math> \; \color{Red} {0,313} </math>.
 +
 
 +
Dvs <math> \, y \, </math> växer i detta intervall med <math> \color{Red} {0,313} \; y</math>-enheter per <math> x</math>-enhet. Med andra ord, marginalskatten är lutningen i figuren ovan.
 +
 
 +
'''Matematisk tolkning''':&nbsp; Marginalskatten <math> = </math> Skattens <b><span style="color:red">genomsnittliga förändringshastighet</span></b> när skatten anses som en <b><span style="color:red">funktion</span></b> av lönen.
 +
 
 +
'''Ekonomisk tolkning''':&nbsp; Marginalskatten är <math> \, 31,3 \, \% </math>, dvs Martin måste betala <math> \, 31,3\,</math> öre i skatt för varje mer intjänad krona.
 +
</div> <!-- exempel1 -->
 +
 
 +
 
 +
Vi ersätter nu den diskreta skattefunktionen i tabellform med en kontinuerlig funktion som är given med ett algebraiskt uttryck:
 +
 
 +
<div class="exempel">
 +
==== <b><span style="color:#931136">Exempel 2 Kvadratisk funktion</span></b> ====
 +
<table>
 +
<tr>
 +
  <td>'''Givet''': &nbsp; &nbsp; &nbsp; &nbsp;Funktionen <math> \, y \, = \, f(x) \, = \, x^2 </math>
 +
 
 +
:::Intervallet <math> \, 0 \,\leq\, x \,\leq\, 2 </math>
 +
 
 +
'''Sökt''': &nbsp; &nbsp; &nbsp; &nbsp; Funktionens genomsnittliga förändringshastighet i intervallet <math> \, 0 \leq x \leq 2 </math>.
 +
 
 +
'''Lösning'''<span style="color:black">:</span>
 +
::<math> {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; \color{Red} 2 </math>
 +
 
 +
I intervallet <math> \, \color{Red}{0 \leq x \leq 2} \, </math> har funktionen <math> \, y = x^2 \, </math> den genomsnittliga förändringshastigheten <math> \, \color{Red} 2 </math>.
 +
 
 +
Dvs funktionen <math> \, y = x^2 \, </math> växer i detta intervall med <math> \, \color{Red} 2 \; y</math>-enheter per <math> \, x</math>-enhet.
 +
 
 +
</td>
 +
  <td>&nbsp; &nbsp; [[Image: Ex1a.jpg]]</td>
 +
</tr>
 +
</table>
 +
 
 +
'''Geometrisk tolkning''': &nbsp;&nbsp; Om kurvan <math> \, y = x^2 \, </math> i intervallet <math> \, 0 \leq x \leq 2 \, </math> ersätts av en <b><span style="color:red">rät linje</span></b>, kallad <b><span style="color:red">sekant</span></b>, har denna linje lutningen <math> \, \color{Red} 2 </math>.
 +
 
 +
:::::::Sekantens <b><span style="color:red">lutning</span></b> är kurvans <b><span style="color:red">genomsnittliga förändringshastighet</span></b> i intervallet <math> \, 0 \leq x \leq 2 </math>.
 +
</div> <!-- exempel2 -->
 +
</small>
 +
 
 +
 
 +
</div> <!-- "ovnE" -->
 +
 
 +
Generellt gäller:
 +
 
 +
<div class="border-divblue">
 +
En funktions genomsnittliga förändringshastighet i ett intervall är lutningen till den <b><span style="color:red">räta linjen (sekanten)</span></b> <br> som ersätter funktionen i intervallet.
 +
</div>
 +
 
 +
 
 +
<div class="ovnC">
 +
 
 +
 
 +
<small>
 +
<div class="exempel">
 +
==== <b><span style="color:#931136">Exempel 3 Oljetank</span></b> ====
 +
<table>
 +
<tr>
 +
  <td>En oljetank läcker genom ett hål i tankens botten.
 +
 
 +
Utströmningen följer följande funktion som beskriver oljans volym<span style="color:black">:</span>
 +
 
 +
:::<math> y \, = \, f(x) \, = \, 4\,x^2 - 380\,x + 9\,000 </math>
 +
där <math> \; \quad \! x \, = \, {\rm Tiden\;i\;minuter} </math>
 +
 
 +
:::<math> y \, = \, {\rm Oljans\;volym\;i\;liter} </math>
 +
 
 +
'''a)''' &nbsp;&nbsp; Rita grafen till funktionen som beskriver utströmningen.
 +
 
 +
'''b)''' &nbsp;&nbsp; Hur stor är oljans <b><span style="color:red">genomsnittliga utströmningshastighet</span></b>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; i hela tidsintervallet från början tills tanken är tom.
 +
</td>
 +
  <td>&nbsp; &nbsp; [[Image: Ex2a.jpg]]</td>
 +
</tr>
 +
</table>
 +
'''c)''' &nbsp;&nbsp; Beräkna oljans genomsnittliga utströmningshastighet i tidsintervallet <math> \, 20 \leq x \leq 30 \, </math>.
 +
 
 +
'''Lösning:'''
 +
 
 +
'''a)'''&nbsp;&nbsp;Se grafen ovan.
 +
 
 +
'''b)'''&nbsp;&nbsp;Grafen tyder på att tanken kommer att vara tom efter ca. <math> \, 45 \, </math> minuter.
 +
 
 +
:Den exakta tiden får man genom att sätta volymen <math> \, y \, </math> till <math> \, 0 \, </math> dvs genom att lösa 2:a gradsekvationen<span style="color:black">:</span>
 +
 
 +
::::<math> 4\,x^2 - 380\,x + 9\,000 = 0 </math>
 +
 
 +
:[[Grafritning och ekvationslösning med räknare#Ekvationsl.C3.B6sning_med_minir.C3.A4knare|<b><span style="color:blue">Ekvationslösning med miniräknare</span></b>]] visar att <math> \, x = 45\, </math> är även den exakta lösningen.
 +
 
 +
:Därför är hela tidsintervallet från början tills tanken är tom<span style="color:black">:</span> <math> \qquad \color{Red} {0 \leq x \leq 45} </math>
 +
 
 +
:I detta intervall är oljans genomsnittliga utströmningshastighet<span style="color:black">:</span>
 +
 
 +
:::<math> {\Delta y \over \Delta x} = {f(45) \, - \, f(0) \over 45 - 0} = {0 \, - \, 9000 \over 45} = {-9000 \over 45} = \color{Red} {-200} </math>
 +
 
 +
:Dvs i intervallet <math> \, \color{Red} {0 \leq x \leq 45} \, </math> sjunker oljans volym med <math> \, 200 \, </math> liter per minut.
 +
 
 +
 
 +
'''c)'''&nbsp;&nbsp;Oljans genomsnittliga utströmningshastighet i intervallet <math> \, 20 \leq x \leq 30 \, </math><span style="color:black">:</span>
 +
 
 +
:::<math> f\,(30) = 4 \cdot 30^2 - 380 \cdot 30 + 9\,000 = 1200 </math>
 +
 
 +
:::<math> f\,(20) = 4 \cdot 20^2 - 380 \cdot 20 + 9\,000 = 3000 </math>
 +
 
 +
:::<math> {\Delta y \over \Delta x} = {f(30) \, - \, f(20) \over 30 - 20} = {1200 \, - \, 3000 \over 30 - 20} = {-1800 \over 10} = \color{Red} {-180} </math>
 +
 
 +
:Dvs i intervallet <math> \, \color{Red} {20 \leq x \leq 30} \, </math> sjunker oljans volym med <math> \, 180 \, </math> liter per minut.
 +
</div> <!-- exempel3 -->
 +
</small>
 +
 
 +
 
 +
</div> <!-- "ovnC" -->
 +
 
 +
 
 +
=== <b><span style="color:#931136">Allmän definition</span></b> ===
 +
'''Givet''': &nbsp; &nbsp; &nbsp; &nbsp;Funktionen <math> y \, = \, f\,(x) </math> i form av en formel, tabell eller graf.
 +
 
 +
:::Något intervall på <math> \, x\, </math>-axeln med givna gränser <math> \, x_1 \, </math> och <math> \, x_2 \, </math> dvs <math> \; x_1 \,\leq\, x \,\leq\, x_2 </math> och <math> \, x_1 \neq x_2 </math>.
 +
 
 +
'''Sökt''': &nbsp; &nbsp; &nbsp; &nbsp; Funktionens genomsnittliga förändringshastighet i intervallet <math> \, x_1 \,\leq\, x \,\leq\, x_2 </math>.
 +
 
 +
'''Lösning''': &nbsp; &nbsp; <math> \displaystyle {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; \boxed{\displaystyle \frac{f(x_2) \, - \, f(x_1)}{x_2 - x_1}} \quad </math> Detta uttryck har använts i exemplen ovan.
 +
 
 +
'''Övergång till notation med intervallängden <math> \, h \, </math>''':
 +
 
 +
Uttrycket ovan används inledningsvis pga dess kända form som lutning. Men i fortsättningen kommer vi att använda en annan variant av uttrycket.
 +
 
 +
Denna variant som används vid [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">derivatans definition</span></b>]] får vi genom att i uttrycket ovan införa en ny beteckning <math> \, h\, </math> för <math> \, x</math>-intervallets längd:
 +
 
 +
::::<math>\begin{align} h & = x_2 - x_1  \qquad  & | \; + \, x_1 \\
 +
                  x_1 + h & = x_2                                \\
 +
          \end{align}</math>
 +
 
 +
Om vi nu i det inramade uttrycket ovan ersätter <math> \, x_2 </math> med <math> \,x_1 + h </math> och <math> \, x_2 - x_1 </math> med <math> \, h </math>, får vi den allmänna definitionen:
 +
 
 +
<div class="border-divblue">
 +
<b><span style="color:#931136">Funktionen <math> \, y = f\,(x)\,</math>:s &nbsp; <span style="color:red">genomsnittliga förändringshastighet</span> &nbsp; i ett intervall av längden <math> \, h \neq 0 \, </math> är:</span></b>
 +
 
 +
::::<small><math> \quad \displaystyle {\Delta y \over \Delta x} \; = \; \boxed{\displaystyle \frac{f(x_1 + h) \, - \, f(x_1)}{h}} \qquad {\rm i\;\;intervallet } \qquad x_1 \,\leq\, x \,\leq\, x_1 + h </math>
 +
 
 +
Andra beteckningar som allihopa är synonymer<span style="color:black">:</span></small> <math> \quad </math> <b><span style="color:red">Förändringskvot</span></b> <math> \quad </math> <b><span style="color:red">Ändringskvot</span></b> <math> \quad </math> <b><span style="color:red">Differenskvot</span></b>
 +
</div>
 +
 
 +
Uttrycket ovan användes redan i [[2.1_Introduktion_till_derivata|<b><span style="color:blue">Aktiviteten</span></b>]] och kommer att användas även i fortsättningen i detta kapitel.
  
::::<math> a^3 = a \cdot a \cdot a </math>
 
  
::::<math> a^{-2} = {1 \over a^2} = {1 \over a \cdot a} </math>
+
=== <b><span style="color:#931136">Internetlänkar</span></b> ===
 +
http://www.youtube.com/watch?v=08yI3grz17I
  
::::<math> a^{-3} = {1 \over a^3} = {1 \over a \cdot a \cdot a} </math>
+
http://www.youtube.com/watch?v=Cze2KrRhHiM
  
----
+
http://www.iceclimbers.net/fil/matematik_c/12.genomsnittlig_forandringshastighet.pdf
  
Själva aktionen <math> a^x\, </math> dvs att ta <math> a\, </math> upphöjt till <math> x\, </math> kallas <span style="color:red">exponentiering</span> och är en ny räkneoperation jämfört med de fyra räknesätten. När x är lika med 2 pratar man om <span style="color:red">kvadrering</span>.
+
http://ingforum.haninge.kth.se/matCD/F%F6rel%E4sning01.pdf
 +
</big>
  
Anta i fortsättningen att <math> x\, </math> är en okänd variabel och <math> b\, </math> och <math> c\, </math> givna konstanter <math> \neq 0 </math> . Då kallas
 
  
:::::::funktioner av typ <math> y = 10^x\, </math> <span style="color:red">exponentialfunktioner</span>, generellt: <math> y = c \cdot a^x\, </math>.
 
  
:::::::ekvationer av typ <math> 10^x\,= 125 </math> <span style="color:red">exponentialekvationer</span>, generellt: <math> a^x\, = b </math>.
 
  
:::::::funktioner av typ <math> y = x^3\, </math> <span style="color:red">potensfunktioner</span>, generellt: <math> y = c \cdot x^b\, </math>.
 
  
:::::::ekvationer av typ <math> x^3\, = 8 </math> <span style="color:red">potensekvationer</span>, generellt: <math> x^b\, = c </math>.
 
  
I exponentialfunktioner och -ekvationer förekommer x i exponenten. I potensfunktioner och -ekvationer förekommer x i basen. Medan exponentialekvationer löses genom <span style="color:red">logaritmering</span> (se avsnitt [[1.6 Logaritmer|1.6 Logaritmer]]), löses potensekvationer genom <span style="color:red">rotdragning</span>. För t.ex. potensekvationen <math> x^3\, = 8 </math> finns det två olika sätt att beskriva lösningen via rotdragning:
 
  
::::::::::::<math>\begin{align} x^3 & = 8  \qquad  & | \; \sqrt[3]{\;\;} \\
 
                      \sqrt[3]{x^3} & = \sqrt[3]{8}                    \\
 
                                  x  & = 2                              \\
 
                  \end{align}</math>
 
Alternativt (med bråktal som exponent):
 
::::::::::::<math>\begin{align} x^3 & = 8  \qquad  & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\
 
                  (x^3)^{1 \over 3} & = 8^{1 \over 3}                  \\
 
              x^{3\cdot{1 \over 3}} & = 8^{1 \over 3}                  \\
 
                                  x  & = 2                              \\
 
                  \end{align}</math>
 
  
Det alternativa sättet att lösa ekvationen <math> x^3 = 8\, </math> visar att rotdragning kan även uppfattas och skrivas som <span style="color:red">exponentiering med bråktalsexponenter</span>. För att förstå detta måste man känna till potenslagarna som behandlas nedan. Dessa gäller även för exponenter som är negativa eller bråktal, även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter.
 
  
== Potenslagarna ==
 
  
Följande lagar gäller för potenser där basen <math> a\, </math> är ett tal <math> \neq 0 </math>, exponenterna <math> x\, </math> och <math> y\, </math> vilka rationella tal som helst och <math> m,\,n </math> heltal (<math> n\neq 0 </math>), med exempel till höger:
+
[[Matte:Copyrights|Copyright]] © 2020 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 2 maj 2020 kl. 20.26

        <<  Förra avsnitt          Genomgång          Övningar          Nästa avsnitt  >>      


Tre exempel på genomsnittlig förändringshastighet

Exempel 1 Marginalskatt

Martins månadslön höjs från \( \, 23\;000 \, \) kr till \( \, 24\;200 \, \) kr.

I Skatteverkets skattetabell för 2017 hittar vi \( \, 5\;579 \, \) kr skatt för den gamla och \( \, 5\;955 \, \) kr skatt för den nya lönen.

Beräkna marginalskatten som är den procentuella andelen av varje lönehöjning som går till skatt.

Lösning: \( \qquad\qquad\qquad\;\; \) Skatten som en diskret funktion av lönen:

\( x\, \) \( y\, \)
\( 23\,000 \) \( 5\,579\)
\( 24\,200 \) \( 5\,955 \)


\( \quad\;\; x \, = \, \) Månadslönen i kr.

\( \quad\;\; y \, = \, \) Skatten i kr.

\( \quad \) Diskret loneSkattfkt 235.png

Skattefunktionens lutning, dvs kvoten mellan skattehöjning och lönehöjning kallas för skattens genomsnittliga förändringshastighet:

\[ {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} = {{\rm Skattehöjningen} \over {\rm Lönehöjningen}} = {5\,955 - 5\,579 \over 24\,200 - 23\,000} \; = \; {376 \over 1200} \; = \; \color{Red} {0,313} \; = \; 31,3 \, \%\]

I intervallet \( \; 23\,000 \,\leq\, x \,\leq\, 24\,200 \, \) har funktionen \( \, y \, \) den genomsnittliga förändringshastigheten \( \; \color{Red} {0,313} \).

Dvs \( \, y \, \) växer i detta intervall med \( \color{Red} {0,313} \; y\)-enheter per \( x\)-enhet. Med andra ord, marginalskatten är lutningen i figuren ovan.

Matematisk tolkning:  Marginalskatten \( = \) Skattens genomsnittliga förändringshastighet när skatten anses som en funktion av lönen.

Ekonomisk tolkning:  Marginalskatten är \( \, 31,3 \, \% \), dvs Martin måste betala \( \, 31,3\,\) öre i skatt för varje mer intjänad krona.


Vi ersätter nu den diskreta skattefunktionen i tabellform med en kontinuerlig funktion som är given med ett algebraiskt uttryck:

Exempel 2 Kvadratisk funktion

Givet:        Funktionen \( \, y \, = \, f(x) \, = \, x^2 \)
Intervallet \( \, 0 \,\leq\, x \,\leq\, 2 \)

Sökt:         Funktionens genomsnittliga förändringshastighet i intervallet \( \, 0 \leq x \leq 2 \).

Lösning:

\[ {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; \color{Red} 2 \]

I intervallet \( \, \color{Red}{0 \leq x \leq 2} \, \) har funktionen \( \, y = x^2 \, \) den genomsnittliga förändringshastigheten \( \, \color{Red} 2 \).

Dvs funktionen \( \, y = x^2 \, \) växer i detta intervall med \( \, \color{Red} 2 \; y\)-enheter per \( \, x\)-enhet.

    Ex1a.jpg

Geometrisk tolkning:    Om kurvan \( \, y = x^2 \, \) i intervallet \( \, 0 \leq x \leq 2 \, \) ersätts av en rät linje, kallad sekant, har denna linje lutningen \( \, \color{Red} 2 \).

Sekantens lutning är kurvans genomsnittliga förändringshastighet i intervallet \( \, 0 \leq x \leq 2 \).


Generellt gäller:

En funktions genomsnittliga förändringshastighet i ett intervall är lutningen till den räta linjen (sekanten)
som ersätter funktionen i intervallet.



Exempel 3 Oljetank

En oljetank läcker genom ett hål i tankens botten.

Utströmningen följer följande funktion som beskriver oljans volym:

\[ y \, = \, f(x) \, = \, 4\,x^2 - 380\,x + 9\,000 \]

där \( \; \quad \! x \, = \, {\rm Tiden\;i\;minuter} \)

\[ y \, = \, {\rm Oljans\;volym\;i\;liter} \]

a)    Rita grafen till funktionen som beskriver utströmningen.

b)    Hur stor är oljans genomsnittliga utströmningshastighet

        i hela tidsintervallet från början tills tanken är tom.

    Ex2a.jpg

c)    Beräkna oljans genomsnittliga utströmningshastighet i tidsintervallet \( \, 20 \leq x \leq 30 \, \).

Lösning:

a)  Se grafen ovan.

b)  Grafen tyder på att tanken kommer att vara tom efter ca. \( \, 45 \, \) minuter.

Den exakta tiden får man genom att sätta volymen \( \, y \, \) till \( \, 0 \, \) dvs genom att lösa 2:a gradsekvationen:
\[ 4\,x^2 - 380\,x + 9\,000 = 0 \]
Ekvationslösning med miniräknare visar att \( \, x = 45\, \) är även den exakta lösningen.
Därför är hela tidsintervallet från början tills tanken är tom: \( \qquad \color{Red} {0 \leq x \leq 45} \)
I detta intervall är oljans genomsnittliga utströmningshastighet:
\[ {\Delta y \over \Delta x} = {f(45) \, - \, f(0) \over 45 - 0} = {0 \, - \, 9000 \over 45} = {-9000 \over 45} = \color{Red} {-200} \]
Dvs i intervallet \( \, \color{Red} {0 \leq x \leq 45} \, \) sjunker oljans volym med \( \, 200 \, \) liter per minut.


c)  Oljans genomsnittliga utströmningshastighet i intervallet \( \, 20 \leq x \leq 30 \, \):

\[ f\,(30) = 4 \cdot 30^2 - 380 \cdot 30 + 9\,000 = 1200 \]
\[ f\,(20) = 4 \cdot 20^2 - 380 \cdot 20 + 9\,000 = 3000 \]
\[ {\Delta y \over \Delta x} = {f(30) \, - \, f(20) \over 30 - 20} = {1200 \, - \, 3000 \over 30 - 20} = {-1800 \over 10} = \color{Red} {-180} \]
Dvs i intervallet \( \, \color{Red} {20 \leq x \leq 30} \, \) sjunker oljans volym med \( \, 180 \, \) liter per minut.



Allmän definition

Givet:        Funktionen \( y \, = \, f\,(x) \) i form av en formel, tabell eller graf.

Något intervall på \( \, x\, \)-axeln med givna gränser \( \, x_1 \, \) och \( \, x_2 \, \) dvs \( \; x_1 \,\leq\, x \,\leq\, x_2 \) och \( \, x_1 \neq x_2 \).

Sökt:         Funktionens genomsnittliga förändringshastighet i intervallet \( \, x_1 \,\leq\, x \,\leq\, x_2 \).

Lösning:     \( \displaystyle {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; \boxed{\displaystyle \frac{f(x_2) \, - \, f(x_1)}{x_2 - x_1}} \quad \) Detta uttryck har använts i exemplen ovan.

Övergång till notation med intervallängden \( \, h \, \):

Uttrycket ovan används inledningsvis pga dess kända form som lutning. Men i fortsättningen kommer vi att använda en annan variant av uttrycket.

Denna variant som används vid derivatans definition får vi genom att i uttrycket ovan införa en ny beteckning \( \, h\, \) för \( \, x\)-intervallets längd:

\[\begin{align} h & = x_2 - x_1 \qquad & | \; + \, x_1 \\ x_1 + h & = x_2 \\ \end{align}\]

Om vi nu i det inramade uttrycket ovan ersätter \( \, x_2 \) med \( \,x_1 + h \) och \( \, x_2 - x_1 \) med \( \, h \), får vi den allmänna definitionen:

Funktionen \( \, y = f\,(x)\,\):s   genomsnittliga förändringshastighet   i ett intervall av längden \( \, h \neq 0 \, \) är:

\( \quad \displaystyle {\Delta y \over \Delta x} \; = \; \boxed{\displaystyle \frac{f(x_1 + h) \, - \, f(x_1)}{h}} \qquad {\rm i\;\;intervallet } \qquad x_1 \,\leq\, x \,\leq\, x_1 + h \)

Andra beteckningar som allihopa är synonymer: \( \quad \) Förändringskvot \( \quad \) Ändringskvot \( \quad \) Differenskvot

Uttrycket ovan användes redan i Aktiviteten och kommer att användas även i fortsättningen i detta kapitel.


Internetlänkar

http://www.youtube.com/watch?v=08yI3grz17I

http://www.youtube.com/watch?v=Cze2KrRhHiM

http://www.iceclimbers.net/fil/matematik_c/12.genomsnittlig_forandringshastighet.pdf

http://ingforum.haninge.kth.se/matCD/F%F6rel%E4sning01.pdf






Copyright © 2020 TechPages AB. All Rights Reserved.