Skillnad mellan versioner av "1.1 Övningar till Tal"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(46 mellanliggande versioner av samma användare visas inte)
Rad 3: Rad 3:
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
{{Not selected tab|[[1.1 Om tal|Genomgång]]}}
 
{{Not selected tab|[[1.1 Om tal|Genomgång]]}}
{{Selected tab|[[1.1 Övningar om tal|Övningar]]}}
+
{{Selected tab|[[1.1 Övningar till Tal|Övningar]]}}
{{Not selected tab|[[1.2 Räkneordning|Nästa avsnitt -->]]}}
+
{{Not selected tab|[[1.2 Räkneordning|Nästa avsnitt  >> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
|}
 
|}
  
  
 
+
<Big><Big><Big><span style="color:#FFB69C">E-övningar: 1-6</span></Big></Big></Big>
<Big><Big><Big><span style="color:#86B404">E-övningar: 1-6</span></Big></Big></Big>
+
  
  
 +
== <b>Övning 1</b> ==
 
<div class="ovnE">
 
<div class="ovnE">
== <b><span style="color:#931136">Övning 1</span></b> ==
 
 
Talet <math> \, 5\,678 \, </math> är givet.
 
Talet <math> \, 5\,678 \, </math> är givet.
  
Rad 23: Rad 22:
  
  
 +
== <b>Övning 2</b> ==
 
<div class="ovnE">
 
<div class="ovnE">
== <b><span style="color:#931136">Övning 2</span></b> ==
 
 
Kasta om siffrorna <math> \, 2 \, </math> och <math> \, 6 \, </math> i talet <math> \, 6\,542 \, </math>.
 
Kasta om siffrorna <math> \, 2 \, </math> och <math> \, 6 \, </math> i talet <math> \, 6\,542 \, </math>.
  
Rad 33: Rad 32:
  
  
 +
== <b>Övning 3</b> ==
 
<div class="ovnE">
 
<div class="ovnE">
== <b><span style="color:#931136">Övning 3</span></b> ==
 
 
Bilda med siffrorna <math> \, 3,\,6,\,1 \, </math> och <math> \, 4 \, </math> ett fyrsiffrigt tal så att det blir så stort som möjligt.
 
Bilda med siffrorna <math> \, 3,\,6,\,1 \, </math> och <math> \, 4 \, </math> ett fyrsiffrigt tal så att det blir så stort som möjligt.
 
{{#NAVCONTENT:Svar 3|1_1.1 Svar 3|Lösning 3|1_1.1 Lösning 3}}</div>
 
{{#NAVCONTENT:Svar 3|1_1.1 Svar 3|Lösning 3|1_1.1 Lösning 3}}</div>
  
  
 +
== <b>Övning 4</b> ==
 
<div class="ovnE">
 
<div class="ovnE">
== <b><span style="color:#931136">Övning 4</span></b> ==
 
 
Talet <math> 20\,136 \, </math> är givet. Ange talets tusental.
 
Talet <math> 20\,136 \, </math> är givet. Ange talets tusental.
 
{{#NAVCONTENT:Svar 4|1_1.1 Svar 4|Lösning 4|1_1.1 Lösning 4}}</div>
 
{{#NAVCONTENT:Svar 4|1_1.1 Svar 4|Lösning 4|1_1.1 Lösning 4}}</div>
  
  
 +
== <b>Övning 5</b> ==
 
<div class="ovnE">
 
<div class="ovnE">
== <b><span style="color:#931136">Övning 5</span></b> ==
 
 
Ange talet tio tusen fem med siffror.
 
Ange talet tio tusen fem med siffror.
 
{{#NAVCONTENT:Svar 5|1_1.1 Svar 5|Lösning 5|1_1.1 Lösning 5}}</div>
 
{{#NAVCONTENT:Svar 5|1_1.1 Svar 5|Lösning 5|1_1.1 Lösning 5}}</div>
  
  
 +
== <b>Övning 6</b> ==
 
<div class="ovnE">
 
<div class="ovnE">
== <b><span style="color:#931136">Övning 6</span></b> ==
 
 
Skriv upp det störst möjliga åttasiffriga talet och ange det i ord.
 
Skriv upp det störst möjliga åttasiffriga talet och ange det i ord.
 
{{#NAVCONTENT:Svar 6|1_1.1 Svar 6|Lösning 6|1_1.1 Lösning 6}}</div>
 
{{#NAVCONTENT:Svar 6|1_1.1 Svar 6|Lösning 6|1_1.1 Lösning 6}}</div>
Rad 58: Rad 57:
  
  
<Big><Big><Big><span style="color:blue">C-övningar: 7-10</span></Big></Big></Big>
 
  
 +
<Big><Big><Big><span style="color:#86B404">C-övningar: 7-10</span></Big></Big></Big>
  
 +
 +
== <b>Övning 7</b> ==
 
<div class="ovnC">
 
<div class="ovnC">
== <b><span style="color:#931136">Övning 7</span></b> ==
 
 
Hur många olika möjligheter finns det att kombinera siffrorna <math> \, 2,\,6 \, </math> och <math> \, 8 \, </math> till ett tresiffrigt tal utan att upprepa en siffra i något tal?
 
Hur många olika möjligheter finns det att kombinera siffrorna <math> \, 2,\,6 \, </math> och <math> \, 8 \, </math> till ett tresiffrigt tal utan att upprepa en siffra i något tal?
 
{{#NAVCONTENT:Svar 7|1_1.1 Svar 7|Lösning 7|1_1.1 Lösning 7}}</div>
 
{{#NAVCONTENT:Svar 7|1_1.1 Svar 7|Lösning 7|1_1.1 Lösning 7}}</div>
 +
<!-- Ursprunglig färg: blå: #CEECF5  -->
  
  
 +
== <b>Övning 8</b> ==
 
<div class="ovnC">
 
<div class="ovnC">
== <b><span style="color:#931136">Övning 8</span></b> ==
+
När Lisa efter sommarlovet kommer till skolan har hon glömt skolans portkod.
När Lisa efter sommarlovet kommer till skolan har hon glömt skolans portkod. Men hon kommer ihåg att den började med <math> \, 2 \, </math> och att resten bestod av de tre siffrorna <math> \, 4,\,7 \, </math> och <math> \, 9 \, </math> och att ingen siffra förekom två gånger.
+
 
 +
Men hon kommer ihåg att den började med <math> \, 2 \, </math> och att resten bestod av de tre siffrorna <math> \, 4,\,7 \, </math> och <math> \, 9 \, </math> och att ingen siffra förekom två gånger.
  
 
Vilka kombinationer måste hon maximalt prova för att komma in?
 
Vilka kombinationer måste hon maximalt prova för att komma in?
Rad 77: Rad 80:
  
  
 +
== <b>Övning 9</b> ==
 
<div class="ovnC">
 
<div class="ovnC">
== <b><span style="color:#931136">Övning 9</span></b> ==
 
 
Kasta om siffrorna i talet <math> \, 8\,239 \, </math> ska så att man får ett fyrasiffrigt tal som är så nära <math> \, 3\,000 \, </math> som möjligt.
 
Kasta om siffrorna i talet <math> \, 8\,239 \, </math> ska så att man får ett fyrasiffrigt tal som är så nära <math> \, 3\,000 \, </math> som möjligt.
 
{{#NAVCONTENT:Svar 9|1_1.1 Svar 9|Lösning 9|1_1.1 Lösning 9}}</div>
 
{{#NAVCONTENT:Svar 9|1_1.1 Svar 9|Lösning 9|1_1.1 Lösning 9}}</div>
  
  
 +
== <b>Övning 10</b> ==
 
<div class="ovnC">
 
<div class="ovnC">
== <b><span style="color:#931136">Övning 10</span></b> ==
+
Skriv talet <math> \, 24\,391 \, </math> som en summa av termer där varje term har formen "(siffra <math> \, 0</math>-<math>9 \, </math>) gånger <math> \, 10</math>-potenser".
Ange talet <math> \, 24\,391 \, </math> som en summa av termer där varje term har formen "(siffra <math> \, 0</math>-<math>9 \, </math>) multiplicerad med <math> \, 10</math>-potenser".
+
 
{{#NAVCONTENT:Svar 10|1_1.1 Svar 11|Lösning 10|1_1.1 Lösning 11}}</div>
 
{{#NAVCONTENT:Svar 10|1_1.1 Svar 11|Lösning 10|1_1.1 Lösning 11}}</div>
  
  
  
<Big><Big><Big><span style="color:#F78181">A-övningar: 11-13</span></Big></Big></Big>
 
  
 +
<Big><Big><Big><span style="color:#62D9FD">A-övningar: 11-13</span></Big></Big></Big>
  
 +
 +
== <b>Övning 11</b> ==
 
<div class="ovnA">
 
<div class="ovnA">
== <b><span style="color:#931136">Övning 11</span></b> ==
+
Hitta det minsta femsiffriga tal vars tiotal är dubbelt så stor som dess tusental.
Hitta det minsta femsiffriga tal vars tiotal är dubbelt så stor som dess tusental. Dessutom ska det sökta talet inte ändra sitt värde om man kastar om hundratalet med entalet.
+
 
 +
Dessutom ska det sökta talet inte ändra sitt värde om man kastar om hundratalet med entalet.
 
{{#NAVCONTENT:Svar 11|1_1.1 Svar 10|Lösning 11|1_1.1 Lösning 10}}</div>
 
{{#NAVCONTENT:Svar 11|1_1.1 Svar 10|Lösning 11|1_1.1 Lösning 10}}</div>
  
  
 +
== <b>Övning 12</b> ==
 
<div class="ovnA">
 
<div class="ovnA">
== <b><span style="color:#931136">Övning 12</span></b> ==
 
 
a) &nbsp; Ange två på varandra följande heltal vars summa är <math> \, 185 \, </math>.
 
a) &nbsp; Ange två på varandra följande heltal vars summa är <math> \, 185 \, </math>.
  
Rad 107: Rad 113:
  
  
 +
== <b>Övning 13</b> ==
 
<div class="ovnA">
 
<div class="ovnA">
== <b><span style="color:#931136">Övning 13</span></b> ==
 
 
a) &nbsp; Visa att talet <math> \, 0,33333 \ldots \, </math> (utan avrundning) är ett rationellt tal genom att härleda följande omskrivning:
 
a) &nbsp; Visa att talet <math> \, 0,33333 \ldots \, </math> (utan avrundning) är ett rationellt tal genom att härleda följande omskrivning:
  
:::::::::<math> 0,33333 \ldots \, = \, {1 \over 3} </math>
+
::::::::::::<math> \; 0,33333 \ldots \, = \, {1 \over 3} </math>
  
b) &nbsp; Hitta bråkformen till talet <math> \, 0,363636 \ldots \, </math> (utan avrundning). Använd metoden från a) eller slå upp i <small><span style="color:blue">Lösning 13a</span></small>.  
+
b) &nbsp; Hitta bråkformen till talet <math> \, 0,363636 \ldots \, </math> (utan avrundning). Använd metoden från a) eller titta på den i [[1 1.1 Lösning 13a|<small><span style="color:blue">Lösning 13a</span></small>]].  
{{#NAVCONTENT:Svar 13a|1_1.1 Svar 13a|Lösning 13a|1_1.1 Lösning 13a|Svar 13b|1_1.1 Svar 13b|Lösning 13b|1_1.1 Lösning 13b}}</div>
+
{{#NAVCONTENT:Lösning 13a|1_1.1 Lösning 13a|Svar 13b|1_1.1 Svar 13b|Lösning 13b|1_1.1 Lösning 13b}}</div>
 +
<!-- Ursprunglig färg: rosa-röd: #F6CECE  -->
  
  
Rad 123: Rad 130:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2015 Math Online Sweden AB. All Rights Reserved.
+
[[Matte:Copyrights|Copyright]] © 2011-2018 Math Online Sweden AB. All Rights Reserved.

Nuvarande version från 27 oktober 2018 kl. 15.03

       Genomgång          Övningar          Nästa avsnitt  >>      


E-övningar: 1-6


Övning 1

Talet 5678 är givet.

a)   Vilket värde har siffran 6 i talet ovan.

b)   Hur ändras talet 5678:s värde om siffran 6 byts ut mot 4?


Övning 2

Kasta om siffrorna 2 och 6 i talet 6542.

a)   Blir talet efteråt större eller mindre?

b)   Hur stor är ändringen?


Övning 3

Bilda med siffrorna 3,6,1 och 4 ett fyrsiffrigt tal så att det blir så stort som möjligt.


Övning 4

Talet 20136 är givet. Ange talets tusental.


Övning 5

Ange talet tio tusen fem med siffror.


Övning 6

Skriv upp det störst möjliga åttasiffriga talet och ange det i ord.



C-övningar: 7-10


Övning 7

Hur många olika möjligheter finns det att kombinera siffrorna 2,6 och 8 till ett tresiffrigt tal utan att upprepa en siffra i något tal?


Övning 8

När Lisa efter sommarlovet kommer till skolan har hon glömt skolans portkod.

Men hon kommer ihåg att den började med 2 och att resten bestod av de tre siffrorna 4,7 och 9 och att ingen siffra förekom två gånger.

Vilka kombinationer måste hon maximalt prova för att komma in?

Använd det du lärde dig i övning 7.


Övning 9

Kasta om siffrorna i talet 8239 ska så att man får ett fyrasiffrigt tal som är så nära 3000 som möjligt.


Övning 10

Skriv talet 24391 som en summa av termer där varje term har formen "(siffra 0-9) gånger 10-potenser".



A-övningar: 11-13


Övning 11

Hitta det minsta femsiffriga tal vars tiotal är dubbelt så stor som dess tusental.

Dessutom ska det sökta talet inte ändra sitt värde om man kastar om hundratalet med entalet.


Övning 12

a)   Ange två på varandra följande heltal vars summa är 185.

b)   Ange tre på varandra följande heltal vars summa är 999.


Övning 13

a)   Visa att talet 0,33333 (utan avrundning) är ett rationellt tal genom att härleda följande omskrivning:

0,33333=13

b)   Hitta bråkformen till talet 0,363636 (utan avrundning). Använd metoden från a) eller titta på den i Lösning 13a.





Copyright © 2011-2018 Math Online Sweden AB. All Rights Reserved.