Skillnad mellan versioner av "Ekvationer"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(490 mellanliggande versioner av 2 användare visas inte)
Rad 1: Rad 1:
 +
__NOTOC__
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Selected tab|[[1.1 Ekvationer|Teori]]}}
+
{{Not selected tab|[[Repetitioner från Matte 2| <<&nbsp;&nbsp;Repetitioner]]}}
{{Not selected tab|[[1.1 Övningar till Ekvationer|Övningar]]}}
+
{{Selected tab|[[Ekvationer|Genomgång]]}}
 +
{{Not selected tab|[[Rotekvationer och högre gradsekvationer|Rotekv.- & högre gradsekvationer]]}}
 +
{{Not selected tab|[[Övningar till Rotekvationer och högre gradsekvationer|Övningar Rotekv. & högre ...]]}}
 +
{{Not selected tab|[[1.1 Polynom|1:a avsnitt: Polynom&nbsp;&nbsp;>> ]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
| style="border-bottom:1px solid #797979"  width="100%"| &nbsp;
 
|}
 
|}
  
  
== Vilken typ av ekvation? ==
+
== <b><span style="color:#931136">Olika typer av ekvationer</span></b> ==
 +
<div class="tolv"> <!-- tolv1 -->
  
Ekvationer har vi lärt oss ända från grundskolan till gymnasiet. I Matte A-kursen har vi bl.a. löst ekvationer av typ:
+
<table>
 +
<tr>
 +
  <td> [[Image:Fig111.gif]] </td>
 +
  <td> <math> \qquad </math> </td>
 +
  <td> Ekvationer har vi lärt oss ända från grundskolan till gymnasiet.
  
<math> 4\,x - (3\,x + 2) = -5\,x+12 </math>
+
I Matte 1-kursen har vi bl.a. löst ekvationer av följande typ:
  
Sådana ekvationer kallas [[linjära]] eller [[1:a gradsekvationer]] eftersom obekanten <math> x </math> förekommer endast som 1:a gradspotens dvs med exponenten 1. <math> x </math> är ju samma som <math> x^1 </math>. Obekantens exponent är alltså avgörande för ekvationens typ och därmed för svårighetsgraden när man vill lösa ekvationen. I Matte B-kursen har vi bl.a. löst ekvationer av typ:
+
'''Linjära ekvationer:'''
  
<math> x^2 + 6\,x - 16 = 0 </math>  
+
<math> \qquad\qquad\quad 4\,x - (3\,x + 2) = -5\,x+12 </math>
 +
</tr>
 +
</table>
 +
Sådana ekvationer kallas <b><span style="color:red">linjära</span></b> eller <b><span style="color:red">1:a gradsekvationer</span></b> eftersom obekanten <math> x\, </math> förekommer endast som 1:a gradspotens dvs med exponenten 1. <math> x\, </math> är ju samma som <math> x^1\, </math>. Högre <math> \, x</math>-potenser förekommer inte i ekvationen.
  
Sådana ekvationer kallas icke-linjära, närmare bestämt [[kvadratiska]] eller [[2:a gradsekvationer]] därför att obekanten <math> x </math> förekommer högst som 2:a gradspotens dvs med exponenten 2, dvs som <math> x^2 </math>.
+
I Matte 2-kursen har vi gått ett steg vidare och löst bl.a. ekvationer av följande typ:
  
Den generella lösningen av 3:e- och högre gradsekvationer är så pass svår att den inte behandlas i skolan. Det är t.o.m. omöjligt att med algebraiska operationer dvs <math> + </math>, <math> - </math>, <math> \cdot </math>, <math> / </math> och<math>\sqrt{ }\;</math> lösa ekvationer av 5:e och högre grad i generell form, vilket bevisades av den norske matematikern [http://sv.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] 1824. I praktiken använder man [http://en.wikipedia.org/wiki/Numerical_analysis numeriska metoder] som man ofta programmerar och låter datorn göra jobbet. Vissa specialfall däremot går att lösa algebraiskt. Vi kommer att ta upp en speciell typ av 4:e gradsekvationer som går att återföra till 2:a gradsekvationer. Men först ska vi komplettera våra kunskaper om ekvationslösning med bl.a. ekvationer av typ:
+
'''Andragradsekvationer:''' <math> \qquad\qquad x^2 + 6\,x - 16 = 0 </math>  
  
<math> \sqrt{x + 2} - 7 = x </math>  
+
Sådana ekvationer kallas icke-linjära, närmare bestämt <b><span style="color:red">kvadratiska</span></b> eller <b><span style="color:red">2:a gradsekvationer</span></b> därför att obekanten <math> x\, </math> förekommer högst som 2:a gradspotens dvs med exponenten 2 eller som <math> x^2\, </math>. Obekantens exponent är alltså avgörande för ekvationens typ och därmed för svårighetsgraden när man vill lösa ekvationen.
  
Sådana ekvationer kallas [[rotekvationer]]. Vi kommer att lösa dem genom att återföra dem till 2:a gradsekvationer, precis som man återför 2:a gradsekvationer till 1:a gradsekvationer. Man bryter ned den nya, okända typen (svårighetsgraden) till en lägre, redan känd typ.
+
==== <b><span style="color:#931136">Fyra metoder för lösning av andragradsekvationer</span></b> ====
  
== Rotekvationer ==
+
[[1.2_Faktorisering_av_polynom#Nollproduktmetoden|<span style="color:#931136">1) Nollproduktmeoden</span>]]<span style="color:black">:</span> <math> \quad (x-3) \cdot (x-4) \, = \, 0 \quad \Rightarrow \quad x_1 = 3 \;\; </math> och <math> \; x_2 = 4 </math>.
  
Förekommer obekanten <math>x</math> under rotsymbolen<math>\sqrt{ }\;</math>, pratar man om en rotekvation. Sådana ekvationer löser man genom att isolera roten på en sida av ekvationen och kvadrera sedan båda leden för att bli av med roten. OBS! Utan isolering kan man inte bli av med roten. Dvs roten måste stå ensam på en sida av ekvationen för att kvadreringen ska kunna eliminera den. Här uppstår nu ett problem som är typisk för rotekvationer: Kvadreringen generar en s.k. [[falsk rot]] och tillför den till ekvationen. OBS! Begreppet "rot" har två betydelser: en gång rotsymbolen<math>\sqrt{ }\;</math>, en annan gång är den synonym till "lösning". När man pratar om falsk rot menar man falsk lösning. Vilken av de lösningarna man får, som är falsk, kan man bara få reda på om man verifierar dem i den ursprungliga rotekvationen, dvs sätter in dem i rotekvationen och prövar vilken som är rätt och vilken som är falsk. Fenomenet ''falsk rot'' beror på att kvadreringen är en operation vars inversa operation (rotdragning) inte är entydig: 2 kvarderat ger 4, men även -2 kvarderat ger 4.
+
<span style="color:#931136">2) Kvadratrotsmetoden:</span> <math> \quad x^2 - 16 \, = \, 0 \quad \Rightarrow \quad x^2 \, = \, 16 \quad \Rightarrow \quad x_1 = 4 \;\; </math> och <math> \; x_2 = -4 </math>.  
  
Här följer ett exempel på hur man löser rotekvationen ovan genom att skriva om den till en 2:a gradsekvation.
+
<span style="color:#931136">3) pq-formeln:</span>
 +
----
 +
::<b><span style="color:red">Normalformen</span></b> <math> \, x^2 + p\,x + q = 0 \, </math> till en 2:a gradsekvation kan lösas med pq-formeln<span style="color:black">:</span>
  
:<math>\begin{align}\sqrt{x + 2} - 7 & = x \quad \\
+
<math> \qquad\qquad\qquad\qquad\qquad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math>
\sqrt{x + 2} & = x + 7 \quad | \cdot \frac 12 \\
+
x + 2 & = (x + 7)^2 \quad | hoch \quad 2 \\
+
x & = 64
+
\end{align}</math>
+
  
 +
----
 +
En annan variant är den s.k. abc-formeln till 2:a gradsekvationen <math>a\,x^2 + b\,x + c = 0\,</math> som kan skrivas om till normalform genom division med <math> \, a </math>.
  
<math>
+
<span style="color:#931136">4) Vietas formler</span>. Vi behandlar här denna metod i detalj:
\begin{align}
+
<small>
0 & = f'(x_0)(x - x_0) + f(x_0) \\
+
== <b><span style="color:#931136">Samband mellan ett polynoms koefficienter och dess nollställen</span></b> ==
x - x_0 & = -\frac{f(x_0)}{f'(x_0)} \\
+
<big>
x & = x_0 - \frac{f(x_0)}{f'(x_0)} \\
+
Den franske matematikern [http://en.wikipedia.org/wiki/Fran%C3%A7ois_Vi%C3%A8te <b><span style="color:blue">François Viète</span></b>] var en av de första som på <math>1500</math>-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom.
\end{align}
+
</math> <br />
+
Iterationsformeln blir alltså<br />
+
<math>x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}</math>
+
  
 +
==== <b><span style="color:#931136">Uppgift:</span></b> ====
 +
Ställ upp en 2:a gradsekvation vars lösningar är <math> \, x_1 = 2 \, </math> och <math> \, x_2 = 3 </math>.
  
<math>2x+5=3</math> is linear while <math>2x^2+5=3</math>
+
==== <b><span style="color:#931136">Lösning:</span></b> ====
 +
För lösningarna <math> x_1\,</math> och <math> \, x_2\,</math> av 2:a gradsekvationen <math> \, x^2 + p\,x + q = 0 \, </math> gäller
 +
</big>
 +
 
 +
<table>
 +
<tr> <td><div class="ovnA">
 +
<b><span style="color:blue">Vietas formler:</span></b>
 +
<table>
 +
<tr>
 +
<td><math> \boxed{\begin{align} x_1  +  x_2 & = -p  \\
 +
                        x_1 \cdot x_2 & = q
 +
          \end{align}} </math></td>
 +
<td><math> \quad {\rm Dvs:} \quad </math></td>
 +
<td><math> \begin{align} 2  +  3 & = 5 = -p  \\
 +
                        2 \cdot 3 & = 6  = q
 +
          \end{align} </math></td>
 +
<td><math> \quad {\rm och:} \quad </math></td>
 +
<td><math> \begin{align} p & = -5  \\
 +
                        q & = 6
 +
          \end{align} </math></td>
 +
</tr>
 +
</table>
 +
 
 +
Därmed blir 2:a gradsekvationen<span style="color:black">:</span>
 +
 
 +
::<math> \; x^2 - 5\,x + 6 \, = \, 0 </math>
 +
</div></td>
 +
<td><math> \qquad </math></td>
 +
<td><big>Kontroll och jämförelse med p-q-formeln<span style="color:black">:</span>
 +
 
 +
:::<math>\begin{array}{rcl} x^2 - 5\,x + 6 & = & 0                          \\
 +
                                    x_{1,2} & = & 2,5 \pm \sqrt{6,25 - 6}  \\
 +
                                    x_{1,2} & = & 2,5 \pm \sqrt{0,25}        \\
 +
                                    x_{1,2} & = & 2,5 \pm 0,5                \\
 +
                                    x_1    & = & 3                         \\
 +
                                    x_2    & = & 2                         
 +
            \end{array}</math></big></td>
 +
</tr>
 +
</table>
 +
 
 +
<big>
 +
Uppgiften ovan ger oss ett praktiskt verktyg i handen att bestämma polynomets nollställen med hjälp av dess koefficienter.
 +
 
 +
Den är en tillämpning av följande generellt samband mellan 2:gradspolynomets koefficienter och dess nollställen:
 +
 
 +
== <small><b><span style="color:#931136">Vietas formler</span></b></small> ==
 +
 
 +
<div class="border-divblue">
 +
Om 2:gradsekvationen <math> \; x^2 + p\,x + q \; = \; 0 \; </math> har lösnin-
 +
 
 +
garna <math> x_1\, </math> och <math> x_2\, </math> så gäller<span style="color:black">:</span> <math> \qquad \boxed{\begin{align} x_1  +  x_2 & = -p  \\
 +
                        x_1 \cdot x_2 & = q
 +
          \end{align}} </math>
 +
</div>
 +
 
 +
 
 +
<big><b><span style="color:#931136">Bevis med p-q formeln</span></b></big>
 +
 
 +
2:a gradsekvationen <math> \, x^2 + p\,x + q = 0\,</math> har enligt [[Ekvationer#3) pq-formeln:|<b><span style="color:blue">pq-formeln</span></b>]] lösningarna <math> \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math>
 +
 
 +
Om vi adderar de båda lösningarna ovan får vi<span style="color:black">:</span>
 +
 
 +
<math> \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p</math>
 +
 
 +
 
 +
Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel.
 +
 
 +
Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi<span style="color:black">:</span>
 +
 
 +
<math> \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q </math>
 +
 
 +
 
 +
Omformningen kring <math> \color{Red} = </math> sker enligt [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">konjugatregeln</span></b>]] <math> (a+b) \cdot (a-b) = a^2 - b^2 </math> om vi sätter <math> \displaystyle a = -\frac{p}{2} </math> och <math> \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}</math>.
 +
 
 +
Detta bevisar Vietas andra formel.
 +
 
 +
 
 +
<big><b><span style="color:#931136">Bevis med faktorisering av polynom och jämförelse av koefficienter</span></b></big>
 +
 
 +
Lösningarna <math> \, x_1\, </math> och <math> \, x_2\, </math> till 2:a gradsekvationen <math> \, x^2 + p\,x + q \, = \, 0 \, </math> är nollställena till 2:gradspolynomet<span style="color:black">:</span>
 +
 
 +
:::::::::<math> x^2 + p\,x + q </math>
 +
 
 +
Å andra sidan: om ett 2:gradspolynom i faktorform <math> \, (x-x_1) \cdot (x-x_2)</math> har nollställena <math> x_1\, </math> och <math> x_2\, </math> så gäller<span style="color:black">:</span>
 +
 
 +
:::::::::<math> (x-x_1) \cdot (x-x_2) \; = \; 0 </math>
 +
 
 +
Därav följer<span style="color:black">:</span> <math> \qquad\qquad x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) </math>
 +
 
 +
Om vi nu utvecklar produkten på höger sidan kan vi skriva vidare<span style="color:black">:</span>
 +
 
 +
::<math> x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) = x^2\,-\,x_2\,x\,-\,x_1\,x\,+\,x_1 \cdot x_2 = x^2\,-\,(x_1+x_2)\,x\,+\,x_1 \cdot x_2 </math>
 +
 
 +
En jämförelse av koefficienterna mellan polynomet <math> x^2 - (x_1+x_2)\,x + x_1 \cdot x_2 </math> (högerled) och polynomet <math> x^2 + p\,x + q </math> (vänsterled) ger:
 +
 
 +
:::::::::<math> x_1 + x_2 = -p \qquad {\rm och} \qquad x_1 \cdot x_2 = q </math>
 +
 
 +
Om detta bevis förefaller vara mindre förståeligt än det första med pq-formeln, kan det bero på att du (beroende på kursupplägg) inte gått igenom [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">Polynom i faktorform</span></b>]] och/eller [[1.1_Fördjupning_till_Polynom#J.C3.A4mf.C3.B6relse_av_koefficienter|<b><span style="color:blue">Jämförelse av koefficienter</span></b>]].
 +
 
 +
 
 +
----
 +
Vietas formler kan generaliseras till polynom av högre grad än <math>2</math> och formuleras för polynom av grad <math>n</math>.
 +
----
 +
</big>
 +
 
 +
 
 +
== <b><span style="color:#931136">Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)</span></b> ==
 +
 
 +
<big>
 +
Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom. Läs även om [[Ekvationer#Nackdelen_med_Vieta|<b><span style="color:blue">nackdelen med Vietas formler</span></b>]].
 +
</big>
 +
 
 +
 
 +
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 1:</span></b> ==
 +
 
 +
<big>
 +
Lös ekvationen <math> \quad x^2 - 7\,x + 10 \; = \; 0 </math>
 +
</big>
 +
 
 +
==== <b><span style="color:#931136">Lösning:</span></b> ====
 +
 
 +
<big>
 +
För lösningarna <math> x_1\,</math> och <math> x_2\,</math> måste enligt Vietas formler gälla<span style="color:black">:</span>
 +
 
 +
:::<math> \begin{align} x_1  +  x_2 & = -(-7) = 7  \\
 +
                        x_1 \cdot x_2 & = 10
 +
        \end{align}</math>
 +
 
 +
Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7.
 +
 
 +
Med lite provande hittar man <math> \, 2 \, </math> och <math> \, 5 \, </math>  eftersom <math> \, 2 + 5 = 7\, </math> och <math> \, 2 \cdot 5 = 10 </math>.
 +
 
 +
Kontrollen bekräftar resultatet<span style="color:black">:</span>
 +
 
 +
:::<math> 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 </math>
 +
 
 +
:::<math> 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 </math>
 +
 
 +
Har vi på det här enkla sättet hittat nollställena till polynomet <math> x^2 - 7\,x + 10 </math> kan vi faktorisera det<span style="color:black">:</span>
 +
 
 +
:::<math> x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) </math>
 +
 
 +
Utveckling av produkten på höger sidan bekräftar faktoriseringen.
 +
</big></div>
 +
 
 +
 
 +
<div class="exempel">
 +
== <b><span style="color:#931136">Exempel 2</span></b> ==
 +
<big>
 +
Lös ekvationen <math> \quad x^2 - 8\,x + 16 \; = \; 0 </math>
 +
</big>
 +
 
 +
==== <b><span style="color:#931136">Lösning:</span></b> ====
 +
 
 +
<big>
 +
Vietas formler ger<span style="color:black">:</span>
 +
 
 +
:::<math> \begin{align} x_1  +  x_2 & = -(-8) = 8  \\
 +
                        x_1 \cdot x_2 & = 16
 +
        \end{align}</math>
 +
 
 +
Man hittar lösningarna <math> x_1 = 4\,</math> och <math> x_2 = 4\,</math> eftersom <math> 4 + 4 = 8\,</math> och <math> 4 \cdot 4 = 16 </math>.
 +
 
 +
Därför kan polynomet <math> x^2 - 8\,x + 16 </math> faktoriseras så här<span style="color:black">:</span>
 +
 
 +
:::<math> x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 </math>
 +
 
 +
Den dubbla förekomsten av faktorn <math> (x-4)\,</math> ger roten, dvs lösningen <math> x = 4\,</math>, dess namn [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">dubbelrot</span></b>]].
 +
</big></div>
 +
 
 +
 
 +
<div class="exempel">
 +
== <b><span style="color:#931136">Nackdelen med Vieta</span></b> ==
 +
<big>
 +
En nackdel med Vietas formler är att man kan råka ut för sådana relationer mellan nollställen och koefficienter att det i praktiken blir svårt att få fram lösningarna direkt. I så fall måste man återgå till p-q formeln. Ett exempel är:
 +
 
 +
:::<math> x^2 - 13\,x + 2 = 0 </math>
 +
 
 +
Vietas formler ger<span style="color:black">:</span>
 +
 
 +
:::<math> \begin{align} x_1  +  x_2 & = -(-13) = 13  \\
 +
                        x_1 \cdot x_2 & = 2
 +
        \end{align}</math>
 +
 
 +
Det är inte så enkelt att få fram lösningarna <math> x_1\, </math> och <math> x_2\, </math> ur dessa relationer.
 +
 
 +
Med p-q formeln får man (se lösningen till [[1.3_Lösning_10b|övning 10 b)]])<span style="color:black">:</span>
 +
 
 +
:::<math>\begin{align}            x_1    & = 12,84428877                \\
 +
                                  x_2    & =  0,15571123                \\
 +
        \end{align}</math>
 +
 
 +
I efterhand kan vi ändå verifiera Vietas formler eftersom de är generella<span style="color:black">:</span>
 +
 
 +
:::<math> \begin{align} 12,84428877  +    0,15571123 & = 13  \\
 +
                        12,84428877 \cdot 0,15571123 & = 2
 +
          \end{align}</math>
 +
</big></div>
 +
</small>
 +
 
 +
 
 +
== <b><span style="color:#931136">Internetlänkar</span></b> ==
 +
 
 +
http://www.youtube.com/watch?v=V8I2_zgNRHI
 +
 
 +
http://www.matteguiden.se/matte-c/polynomfunktioner/andra-typer-av-ekvationer/#Rotekvationer
 +
 
 +
http://www.pluggakuten.se/wiki/index.php?title=Rotekvation
 +
 
 +
http://wiki.math.se/wikis/forberedandematte1/index.php/3.2_Rotekvationer
 +
 
 +
http://wiki.math.se/wikis/sf0600_0701/index.php/3.2_Rotekvationer
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
[[Matte:Copyrights|Copyright]] © 2020 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 16 maj 2020 kl. 13.20

        <<  Repetitioner          Genomgång          Rotekv.- & högre gradsekvationer          Övningar Rotekv. & högre ...          1:a avsnitt: Polynom  >>      


Olika typer av ekvationer

Fig111.gif \( \qquad \) Ekvationer har vi lärt oss ända från grundskolan till gymnasiet.

I Matte 1-kursen har vi bl.a. löst ekvationer av följande typ:

Linjära ekvationer:

\( \qquad\qquad\quad 4\,x - (3\,x + 2) = -5\,x+12 \)

Sådana ekvationer kallas linjära eller 1:a gradsekvationer eftersom obekanten \( x\, \) förekommer endast som 1:a gradspotens dvs med exponenten 1. \( x\, \) är ju samma som \( x^1\, \). Högre \( \, x\)-potenser förekommer inte i ekvationen.

I Matte 2-kursen har vi gått ett steg vidare och löst bl.a. ekvationer av följande typ:

Andragradsekvationer: \( \qquad\qquad x^2 + 6\,x - 16 = 0 \)

Sådana ekvationer kallas icke-linjära, närmare bestämt kvadratiska eller 2:a gradsekvationer därför att obekanten \( x\, \) förekommer högst som 2:a gradspotens dvs med exponenten 2 eller som \( x^2\, \). Obekantens exponent är alltså avgörande för ekvationens typ och därmed för svårighetsgraden när man vill lösa ekvationen.

Fyra metoder för lösning av andragradsekvationer

1) Nollproduktmeoden: \( \quad (x-3) \cdot (x-4) \, = \, 0 \quad \Rightarrow \quad x_1 = 3 \;\; \) och \( \; x_2 = 4 \).

2) Kvadratrotsmetoden: \( \quad x^2 - 16 \, = \, 0 \quad \Rightarrow \quad x^2 \, = \, 16 \quad \Rightarrow \quad x_1 = 4 \;\; \) och \( \; x_2 = -4 \).

3) pq-formeln:


Normalformen \( \, x^2 + p\,x + q = 0 \, \) till en 2:a gradsekvation kan lösas med pq-formeln:

\( \qquad\qquad\qquad\qquad\qquad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\)


En annan variant är den s.k. abc-formeln till 2:a gradsekvationen \(a\,x^2 + b\,x + c = 0\,\) som kan skrivas om till normalform genom division med \( \, a \).

4) Vietas formler. Vi behandlar här denna metod i detalj:

Samband mellan ett polynoms koefficienter och dess nollställen

Den franske matematikern François Viète var en av de första som på \(1500\)-talet såg sambandet mellan ett polynoms koefficienter och dess nollställen. Därför kallas formlerna efter honom.

Uppgift:

Ställ upp en 2:a gradsekvation vars lösningar är \( \, x_1 = 2 \, \) och \( \, x_2 = 3 \).

Lösning:

För lösningarna \( x_1\,\) och \( \, x_2\,\) av 2:a gradsekvationen \( \, x^2 + p\,x + q = 0 \, \) gäller

Vietas formler:

\( \boxed{\begin{align} x_1 + x_2 & = -p \\ x_1 \cdot x_2 & = q \end{align}} \) \( \quad {\rm Dvs:} \quad \) \( \begin{align} 2 + 3 & = 5 = -p \\ 2 \cdot 3 & = 6 = q \end{align} \) \( \quad {\rm och:} \quad \) \( \begin{align} p & = -5 \\ q & = 6 \end{align} \)

Därmed blir 2:a gradsekvationen:

\[ \; x^2 - 5\,x + 6 \, = \, 0 \]
\( \qquad \) Kontroll och jämförelse med p-q-formeln:
\[\begin{array}{rcl} x^2 - 5\,x + 6 & = & 0 \\ x_{1,2} & = & 2,5 \pm \sqrt{6,25 - 6} \\ x_{1,2} & = & 2,5 \pm \sqrt{0,25} \\ x_{1,2} & = & 2,5 \pm 0,5 \\ x_1 & = & 3 \\ x_2 & = & 2 \end{array}\]

Uppgiften ovan ger oss ett praktiskt verktyg i handen att bestämma polynomets nollställen med hjälp av dess koefficienter.

Den är en tillämpning av följande generellt samband mellan 2:gradspolynomets koefficienter och dess nollställen:

Vietas formler

Om 2:gradsekvationen \( \; x^2 + p\,x + q \; = \; 0 \; \) har lösnin-

garna \( x_1\, \) och \( x_2\, \) så gäller: \( \qquad \boxed{\begin{align} x_1 + x_2 & = -p \\ x_1 \cdot x_2 & = q \end{align}} \)


Bevis med p-q formeln

2:a gradsekvationen \( \, x^2 + p\,x + q = 0\,\) har enligt pq-formeln lösningarna \( \quad \displaystyle x_{1,2}=-\frac{p}{2}\pm\sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\)

Om vi adderar de båda lösningarna ovan får vi:

\( \displaystyle x_1 \, + \, x_2 \, = \, \left(-\frac{p}{2} \, + \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, + \, \left(-\frac{p}{2} \, - \, \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \, = \, -\frac{p}{2} \, - \, \frac{p}{2} \, = \, - \, p\)


Detta för att de båda rotuttrycken tar ut varandra när vi löser upp parenteserna, vilket bevisar Vietas första formel.

Om vi nu multiplicerar pq-formelns båda lösningar med varandra får vi:

\( \displaystyle x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\right) \color{Red} = \bigg(\frac{p}{2}\bigg)^2 - \left( \bigg(\frac{p}{2}\bigg)^2-q \right) = \bigg(\frac{p}{2}\bigg)^2 - \bigg(\frac{p}{2}\bigg)^2 + q \, = \, q \)


Omformningen kring \( \color{Red} = \) sker enligt konjugatregeln \( (a+b) \cdot (a-b) = a^2 - b^2 \) om vi sätter \( \displaystyle a = -\frac{p}{2} \) och \( \displaystyle b = \sqrt{\bigg(\frac{p}{2}\bigg)^2-q}\).

Detta bevisar Vietas andra formel.


Bevis med faktorisering av polynom och jämförelse av koefficienter

Lösningarna \( \, x_1\, \) och \( \, x_2\, \) till 2:a gradsekvationen \( \, x^2 + p\,x + q \, = \, 0 \, \) är nollställena till 2:gradspolynomet:

\[ x^2 + p\,x + q \]

Å andra sidan: om ett 2:gradspolynom i faktorform \( \, (x-x_1) \cdot (x-x_2)\) har nollställena \( x_1\, \) och \( x_2\, \) så gäller:

\[ (x-x_1) \cdot (x-x_2) \; = \; 0 \]

Därav följer: \( \qquad\qquad x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) \)

Om vi nu utvecklar produkten på höger sidan kan vi skriva vidare:

\[ x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) = x^2\,-\,x_2\,x\,-\,x_1\,x\,+\,x_1 \cdot x_2 = x^2\,-\,(x_1+x_2)\,x\,+\,x_1 \cdot x_2 \]

En jämförelse av koefficienterna mellan polynomet \( x^2 - (x_1+x_2)\,x + x_1 \cdot x_2 \) (högerled) och polynomet \( x^2 + p\,x + q \) (vänsterled) ger:

\[ x_1 + x_2 = -p \qquad {\rm och} \qquad x_1 \cdot x_2 = q \]

Om detta bevis förefaller vara mindre förståeligt än det första med pq-formeln, kan det bero på att du (beroende på kursupplägg) inte gått igenom Polynom i faktorform och/eller Jämförelse av koefficienter.



Vietas formler kan generaliseras till polynom av högre grad än \(2\) och formuleras för polynom av grad \(n\).



Lösning av 2:a gradsekvationer med Vieta (utan p-q-formeln)

Er stor fördel av Vietas formler för oss är att man kan lösa 2:a gradsekvationer och därmed faktorisera polynom utan att behöva använda p-q-formeln. Detta innebär mindre räknearbete vilket i sin tur minskar risken för felräkning. På köpet går det fortare att ta fram faktorisering av polynom. Läs även om nackdelen med Vietas formler.


Exempel 1:

Lös ekvationen \( \quad x^2 - 7\,x + 10 \; = \; 0 \)

Lösning:

För lösningarna \( x_1\,\) och \( x_2\,\) måste enligt Vietas formler gälla:

\[ \begin{align} x_1 + x_2 & = -(-7) = 7 \\ x_1 \cdot x_2 & = 10 \end{align}\]

Vi måste alltså hitta två tal vars produkt är 10 och vars summa är 7.

Med lite provande hittar man \( \, 2 \, \) och \( \, 5 \, \) eftersom \( \, 2 + 5 = 7\, \) och \( \, 2 \cdot 5 = 10 \).

Kontrollen bekräftar resultatet:

\[ 2^2 - 7\cdot 2 + 10 = 4 - 14 + 10 = 0 \]
\[ 5^2 - 7\cdot 5 + 10 = 25 - 35 + 10 = 0 \]

Har vi på det här enkla sättet hittat nollställena till polynomet \( x^2 - 7\,x + 10 \) kan vi faktorisera det:

\[ x^2 - 7\,x + 10 = (x - 2) \cdot (x - 5) \]

Utveckling av produkten på höger sidan bekräftar faktoriseringen.


Exempel 2

Lös ekvationen \( \quad x^2 - 8\,x + 16 \; = \; 0 \)

Lösning:

Vietas formler ger:

\[ \begin{align} x_1 + x_2 & = -(-8) = 8 \\ x_1 \cdot x_2 & = 16 \end{align}\]

Man hittar lösningarna \( x_1 = 4\,\) och \( x_2 = 4\,\) eftersom \( 4 + 4 = 8\,\) och \( 4 \cdot 4 = 16 \).

Därför kan polynomet \( x^2 - 8\,x + 16 \) faktoriseras så här:

\[ x^2 - 8\,x + 16 = (x - 4) \cdot (x - 4) = (x - 4)^2 \]

Den dubbla förekomsten av faktorn \( (x-4)\,\) ger roten, dvs lösningen \( x = 4\,\), dess namn dubbelrot.


Nackdelen med Vieta

En nackdel med Vietas formler är att man kan råka ut för sådana relationer mellan nollställen och koefficienter att det i praktiken blir svårt att få fram lösningarna direkt. I så fall måste man återgå till p-q formeln. Ett exempel är:

\[ x^2 - 13\,x + 2 = 0 \]

Vietas formler ger:

\[ \begin{align} x_1 + x_2 & = -(-13) = 13 \\ x_1 \cdot x_2 & = 2 \end{align}\]

Det är inte så enkelt att få fram lösningarna \( x_1\, \) och \( x_2\, \) ur dessa relationer.

Med p-q formeln får man (se lösningen till övning 10 b)):

\[\begin{align} x_1 & = 12,84428877 \\ x_2 & = 0,15571123 \\ \end{align}\]

I efterhand kan vi ändå verifiera Vietas formler eftersom de är generella:

\[ \begin{align} 12,84428877 + 0,15571123 & = 13 \\ 12,84428877 \cdot 0,15571123 & = 2 \end{align}\]


Internetlänkar

http://www.youtube.com/watch?v=V8I2_zgNRHI

http://www.matteguiden.se/matte-c/polynomfunktioner/andra-typer-av-ekvationer/#Rotekvationer

http://www.pluggakuten.se/wiki/index.php?title=Rotekvation

http://wiki.math.se/wikis/forberedandematte1/index.php/3.2_Rotekvationer

http://wiki.math.se/wikis/sf0600_0701/index.php/3.2_Rotekvationer





Copyright © 2020 TechPages AB. All Rights Reserved.