Skillnad mellan versioner av "1.5a Lösning 10c"

Från Mathonline
Hoppa till: navigering, sök
m
 
(10 mellanliggande versioner av samma användare visas inte)
Rad 5: Rad 5:
 
Funktionen <math> f(x)\, </math> har två diskontinuiteter:
 
Funktionen <math> f(x)\, </math> har två diskontinuiteter:
  
<math> x_1 = -2 {\color{White} x} </math> är en hävbar diskontinuitet.
+
:<math> x_1 = -2 \; \quad {\rm är\;en\;hävbar\;diskontinuitet.} </math>
  
<math> x_2 = 2 \, {\color{White} xx} </math> är en icke-hävbar diskontinuitet.
+
:<math> x_2 = 2 \qquad {\rm är\;en\;icke-hävbar\;diskontinuitet.} </math>
  
Den hävbara diskontinuiteten <math> x_1 = -2\, </math> ses
+
Den hävbara diskontinuiteten ses inte i grafen till <math> f(x)\, </math>. Men i själva verket finns ett "hål" eller en "lucka" i <math> x = -2\, </math> som man inte ser med blotta ögat. Så funktionen <math> f(x)\, </math> är inte definierad för <math> x = -2\, </math> och har en diskontinuitet där. Att den inte visas som ett oändlighetsställe i grafen beror på att den är hävbar. Den andra, icke-hävbara diskontinuiteten <math> x_2 = 2 \, </math> visas tydligt med ett oändlighetsställe.
  
 
+
Funktionen <math> g(x)\, </math> däremot är både definierad och kontinuerlig för <math> x = -2\, </math>. Det finns inget "hål" i grafen där. Men även <math> g(x)\, </math> är inte definierad för <math> x = 2 \, </math> och har - precis som <math> f(x)\, </math> - en icke-hävbar [[1.5_Fördjupning_till_Kontinuerliga_och_diskreta_funktioner#Olika_typer_av_diskontinuitet|<strong><span style="color:blue">diskontinuitet av typ oändlighetsställe</span></strong>]] där, vilket även visas i grafen.
 
+
är funktionen <math> f(x)\, </math> inte är definierad för <math> x = -3\, </math> och har en diskontinuitet där. Därför har dess graf (kurvan till vänster) ett "hål" eller en "lucka" i <math> x = -3\, </math> som man inte ser med blotta ögat. Så grafen lurar oss. Vi måste hålla oss till <math> f(x)\, </math>:s funktionsuttryck ovan som klart visar <u>två</u> diskontinuiteter, en i <math> x = -3\, </math> och den andra i <math> x = 3\, </math>. Den första som vi lyckades få bort genom förkortning, är en s.k. <strong><span style="color:red">hävbar diskontinuitet</span></strong> medan den andra är icke-hävbar.
+

Nuvarande version från 3 juli 2015 kl. 21.22

Övn 10.png

Till synes visar resultatet helt identiska kurvor. Men från övningens a)-del vet vi:

Funktionen f(x) har två diskontinuiteter:

x_1 = -2 \; \quad {\rm är\;en\;hävbar\;diskontinuitet.}

x_2 = 2 \qquad {\rm är\;en\;icke-hävbar\;diskontinuitet.}

Den hävbara diskontinuiteten ses inte i grafen till f(x)\, . Men i själva verket finns ett "hål" eller en "lucka" i x = -2\, som man inte ser med blotta ögat. Så funktionen f(x)\, är inte definierad för x = -2\, och har en diskontinuitet där. Att den inte visas som ett oändlighetsställe i grafen beror på att den är hävbar. Den andra, icke-hävbara diskontinuiteten x_2 = 2 \, visas tydligt med ett oändlighetsställe.

Funktionen g(x)\, däremot är både definierad och kontinuerlig för x = -2\, . Det finns inget "hål" i grafen där. Men även g(x)\, är inte definierad för x = 2 \, och har - precis som f(x)\, - en icke-hävbar diskontinuitet av typ oändlighetsställe där, vilket även visas i grafen.