Skillnad mellan versioner av "1.1 Polynom"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m (→Vad är ett polynom?) |
||
Rad 15: | Rad 15: | ||
där a en godtycklig konstant och n ett naturligt tal, dvs ett positivt tal eller 0. OBS! n får varken vara negativt eller ett bråk (decimaltal), medan a kan vara vilken typ av tal som helst. x däremot är en [[variabel]] som kan anta vilka värden som helst. Ett exempel på term är: | där a en godtycklig konstant och n ett naturligt tal, dvs ett positivt tal eller 0. OBS! n får varken vara negativt eller ett bråk (decimaltal), medan a kan vara vilken typ av tal som helst. x däremot är en [[variabel]] som kan anta vilka värden som helst. Ett exempel på term är: | ||
− | :::::::::::::::<math> -8 \cdot x^3 </math> | + | ::::::::::::::::<math> -8 \cdot x^3 </math> |
Om ett polynom ska vara en summa av många sådana termer med olika a och n, då måste ett polynom vara en speciell form av en [[funktion]] därför att varje term innehåller ju variabeln x och är därmed en funktion. Då blir även summan av dem en funktion. Och så är det också. Polynom är bara en utvidgning av de typer av funktioner som vi sysslat hittills med.I Matte A-kursen har vi arbetat med funktioner av typ: | Om ett polynom ska vara en summa av många sådana termer med olika a och n, då måste ett polynom vara en speciell form av en [[funktion]] därför att varje term innehåller ju variabeln x och är därmed en funktion. Då blir även summan av dem en funktion. Och så är det också. Polynom är bara en utvidgning av de typer av funktioner som vi sysslat hittills med.I Matte A-kursen har vi arbetat med funktioner av typ: |
Versionen från 24 november 2010 kl. 16.03
Teori | Övningar |
Innehåll
Vad är ett polynom?
Ordet "poly" betyder på latin många och "nom" som egentligen är namn, betyder här term, så att "polynom" blir många termer. Närmare bestämt är ett polynom en summa av många termer. Men vad exakt är en term och hur ser den konkret ut? När man pratar om polynom menar man med term ett uttryck av formen:
- \[ a \cdot x^n \]
där a en godtycklig konstant och n ett naturligt tal, dvs ett positivt tal eller 0. OBS! n får varken vara negativt eller ett bråk (decimaltal), medan a kan vara vilken typ av tal som helst. x däremot är en variabel som kan anta vilka värden som helst. Ett exempel på term är:
- \[ -8 \cdot x^3 \]
Om ett polynom ska vara en summa av många sådana termer med olika a och n, då måste ett polynom vara en speciell form av en funktion därför att varje term innehåller ju variabeln x och är därmed en funktion. Då blir även summan av dem en funktion. Och så är det också. Polynom är bara en utvidgning av de typer av funktioner som vi sysslat hittills med.I Matte A-kursen har vi arbetat med funktioner av typ\[ y = 4\,x - (3\,x + 2) + 12 \]
Sådana funktioner kallas linjära eller 1:a gradsfunktioner eftersom variabeln \( x \) förekommer endast som 1:a gradspotens dvs med exponenten 1. \( x \) är ju samma som \( x^1 \). Högre x-potenser förekommer inte. I Matte B-kursen har vi gått ett steg vidare och sysslat med funktioner av typ\[ y = x^2 + 6\,x - 16 \]
Sådana funktioner kallas icke-linjära, närmare bestämt kvadratiska eller 2:a gradsfunktioner därför att obekanten \( x \) förekommer högst som 2:a gradspotens dvs med exponenten 2 eller som \( x^2 \).
D
Ett polynoms värde
Denna regel används när olika räkneoperationer är inblandade i ett uttryck. I uttrycket ovan är både addition och multiplikation inblandade. För varje räkneoperation vars symboler \(+, -, \cdot\;\) och \(/\;\) även kallas operatorer har man definierat en viss prioritet. Man pratar om operatorprioritet - bara ett annat ord för räkneordning. Operatorn \(\cdot\;\) har högre prioritet än operatorn \(+\) dvs \(\cdot\;\) måste alltid räknas före \(+\) varför 3 gånger 5 måste räknas först och \(6+15\) sedan. För att visa hur man tänkt skriver man så här\[6+3\cdot5=6+15=21\]
Att additionen \(6+\) måste vänta innebär just att man efter det första likhetstecknet måste upprepa \(6+\) för att säkerställa likhetens logik, dvs för att garantera att det verkligen står samma värde till vänster som till höger av likhetstecknet (se Exempel 1).
Riktiga miniräknare följer prioritetsregeln ovan, men kanske inte räknaren i din mobiltelefon. Testa den räknare som du använder. Följer den regeln? Om inte, är den värdelös. I så fall skaffa en räknare som gör det.
Självklart har man även kommit överens om de andra operatorernas prioritet:
Addition och subtraktion av polynom
Om vi i det inledande exemplet sätter paranteser kan vi bryta prioritetsordningen och få 45\[(6+3)\cdot5=9\cdot5=45\]
Parentesen tvingar oss här att först räkna \(6+3\) och sedan fortsätta med gånger 5 så att man får 45. Uttrycket till vänster är ett annat uttryck än det inledande exemplet. För att få det inledande exemplet måste paranteserna sättas så här\[6+(3\cdot5)=6+15=21\]
Nu är uttrycket till vänster identiskt med det inledande exemplet. Man kan också säga att det fanns i det inledande exemplet "osynliga" parenteser. Det är sådana som kan utelämnas utan att någon ändring sker. Nu har vi gjort dem synliga. De gör exakt samma sak som prioritetsregeln "multiplikation går före addition". Därför utelämnar man dem vanligtvis och låter prioritetsregeln göra jobbet. Men det är inte heller fel att skriva parenteserna för tydlighetens skull.
Multiplikation av polynom
Det finns inte bara osynliga parenteser. Det är de som kan utelämnas utan problem. Det finns även osynliga multiplikationstecken. De kan också utelämnas utan att någon ändring av uttryckets värde förekommer. I exemplet ovan som inledde "Parenteser" kan man faktiskt utelämna multiplikationstecknet och skriva\[(6+3)\,5\]
som ger exakt samma värde 9 gånger 5 = 45 som ovan. Det gör man helt enkelt för att skriva lite mindre så att det blir enklare, av samma anledning förresten som för osynliga parenteser. Självklart kan man inte alltid utelämna multiplikationstecken, t.ex. inte mellan två rena siffror eller tal som ska multipliceras. Läsligheten får ju inte lida. I uttrycket \((6+3)\,5\) är det parentesen som gör att multiplikationstecknet kan utelämnas. I sådana fall måste vi tänka oss först det osynliga multiplikationstecknet och räkna sedan. Se övning 5 i detta avsnitt.
Exempel 1
Vad ger följande uttryck?
\(12-2\cdot3+6\)
Det vanligaste felet man gör är att börja räkna \(12-2\). Istället för att börja räkna måste man titta på hela uttrycket. Då konstaterar man att det finns operatorer med olika prioriteter nämligen \(+\) och \(\cdot\;\) vilket innebär att prioritetsreglerna måste användas\[12-2\cdot3+6=12-(2\cdot3)+6=12-6+6=12-0=12\]
Parentesen är här endast till för att förtydliga hur man tänkt och räknat. Observera också likhetstecknets korrekta användning. Skriver man en kedja av likheter för att visa alla mellansteg måste man beakta att det verkligen står exakt samma sak på båda sidor av likhetstecknen. Därför måste t.ex. talet 12 upprepas i alla mellansteg ända till slutet för att upprätthålla likheterna, även om man inte räknar med 12 förrän i det allra sista steget. Genom skicklig användning av räkneordning kan man minimera räknearbetet.
Exempel 2
Här har vi ett lite större uttryck med parenteser\[(50+14)-8\cdot3+4\]
Om vi endast tillämpar det vi lärt oss i det här avsnittet dvs räknar först multiplikationen blir lösningen följande\[(50+14)-8\cdot3+4 = (50+14)-24+4 = 64-24+4 = 40+4 = 44\]
Men även följande lösning är helt korrekt\[(50+14)-8\cdot3+4 = 64-8\cdot3+4 = 64-24+4 = 40+4 = 44\]
Här har man löst upp parentesen först vilket inte alls står i motsägelse till prioritetsreglerna. Inom parentesen finns ju ingen annan operator än \(+\) så att det inte uppstår något problem vad gäller operatorprioritet. I nästa steg räknas 8 gånger 3 först och dras av sedan från 64. Viktigt är att man efter första likhetstecknet inte begår felet att räkna \(64-8\) utan tar först 8 gånger 3.
Frågan som uppstår nu är: Vilken av de två lösningarna ovan är bättre? Just i det här exemplet spelar det ingen roll. Men generellt kommer vi att se att det i större sammanhang är bättre att lösa upp paranteser först, dvs att räkna deras innehåll så att man kan ta bort dem. Sedan kan man följa operatorernas prioritetsregler.
Exempel 3
Problem: Beräkna utan miniräknare\[24 - (8-4) - 36/6 + 5\cdot4\]
Svar: 34
Lösning:
\(24\,-\,(8-4)\,-\,36/6\,+\,5\,\cdot\,4\;=\;24\,-\,4\,-\,6\,+\,20\;=\;20\,-\,6\,+\,20\;=\;14\,+\,20\;=\;34\)
Här har vi förkortat lösningen genom att sammanfatta beräkningen av parentesen, divisionen och multiplikationen i det första mellansteget.
Ett polynoms grad
Problem: Beräkna utan räknare och kontrollera resultatet med räknaren\[\left({16-4 \over 3} + 7\right) \cdot 2 - 9/3 + 1 \]
Svar: 20
Lösning:
\(\left({16-4 \over 3} + 7\right)\,\cdot\,2\,-\,9/3\,+\,1 = \left({12 \over 3} + 7\right)\,\cdot\,2\,-\,3\,+\,1 = (4+7)\,\cdot\,2\,-\,3\,+\,1 = 11\,\cdot\,2\,-\,3\,+\,1 = 22\,-\,3\,+\,1 = 22\,-\,3\,+\,1 = 19\,+\,1 = 20\)
Här har vi i det första mellansteget börjat att beräkna parentesen och samtidigt utfört divisionen \(9/3\) för att skriva lite mindre. Upplösningen av parentesen fortsätter i det andra mellansteget medan divisionen är avslutad och resultatet tas med i de följande mellanstegen tills parentesen är upplöst och multiplikationen med 2 genomförd.
Internetlänkar
http://www.youtube.com/watch?v=doxCjrqxoRM
http://www.mathgoodies.com/lessons/vol7/order_operations.html
http://math.about.com/gi/dynamic/offsite.htm?site=http://www.funbrain.com/algebra/