Skillnad mellan versioner av "2.2 Genomsnittlig förändringshastighet"

Från Mathonline
Hoppa till: navigering, sök
m (Begreppet)
m (Begreppet)
Rad 22: Rad 22:
 
::::<math> {\Delta y \over \Delta x} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; {f(x_2) \, - \, f(x_1) \over x_2 - x_1} </math>
 
::::<math> {\Delta y \over \Delta x} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; {f(x_2) \, - \, f(x_1) \over x_2 - x_1} </math>
  
Om vi inför den nya beteckningen
+
Om vi inför den nya beteckningen:
  
::::::::::::<math>\begin{align} x^3 & = 8 \qquad  & | \; \sqrt[3]{\;\;} \\
+
::::<math>\begin{align} h & = x_2 - x_1 \qquad  & | \; + \; x_1 \\
                      \sqrt[3]{x^3} & = \sqrt[3]{8}                    \\
+
                  x_1 + h & = x_2                                \\
                                  x  & = 2                              \\
+
          \end{align}</math>
                  \end{align}</math>
+
 
Alternativt (med bråktal som exponent):
+
kan den genomsnittliga förändringshastigheten definieras som:
::::::::::::<math>\begin{align} x^3 & = 8  \qquad  & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\
+
 
                  (x^3)^{1 \over 3} & = 8^{1 \over 3}                  \\
+
::::<math> {\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h} </math>
              x^{3\cdot{1 \over 3}} & = 8^{1 \over 3}                  \\
+
 
                                  x  & = 2                              \\
+
----
                  \end{align}</math>
+
  
 
Det alternativa sättet att lösa ekvationen <math> x^3 = 8\, </math> visar att rotdragning kan även uppfattas och skrivas som <span style="color:red">exponentiering med bråktalsexponenter</span>. För att förstå detta måste man känna till potenslagarna som behandlas nedan. Dessa gäller även för exponenter som är negativa eller bråktal, även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter.
 
Det alternativa sättet att lösa ekvationen <math> x^3 = 8\, </math> visar att rotdragning kan även uppfattas och skrivas som <span style="color:red">exponentiering med bråktalsexponenter</span>. För att förstå detta måste man känna till potenslagarna som behandlas nedan. Dessa gäller även för exponenter som är negativa eller bråktal, även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter.

Versionen från 30 april 2011 kl. 14.47

       Teori          Övningar      


Begreppet

Givet:

Funktionen \( y \, = \, f\,(x) \) i form av en formel, tabell eller graf.
Något intervall på \( x\, \)-axeln\[ x_1 \,\leq\, x \,\leq\, x_2 \] dvs ett intervall med givna gränser \( x_1\, \) och \( x_2\, \).

Sökt:

Funktionens genomsnittliga förändringshastighet i detta intervall dvs:
\[ {\Delta y \over \Delta x} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; {f(x_2) \, - \, f(x_1) \over x_2 - x_1} \]

Om vi inför den nya beteckningen:

\[\begin{align} h & = x_2 - x_1 \qquad & | \; + \; x_1 \\ x_1 + h & = x_2 \\ \end{align}\]

kan den genomsnittliga förändringshastigheten definieras som:

\[ {\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h} \]

Det alternativa sättet att lösa ekvationen \( x^3 = 8\, \) visar att rotdragning kan även uppfattas och skrivas som exponentiering med bråktalsexponenter. För att förstå detta måste man känna till potenslagarna som behandlas nedan. Dessa gäller även för exponenter som är negativa eller bråktal, även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter.

Potenslagarna

Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( x\, \) och \( y\, \) vilka rationella tal som helst och \( m,\,n \) heltal (\( n\neq 0 \)), med exempel till höger: