Skillnad mellan versioner av "2.2 Genomsnittlig förändringshastighet"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(25 mellanliggande versioner av samma användare visas inte)
Rad 10: Rad 10:
  
  
[[Media: Lektion_13_Genomsnittlig_forandringshastighet.pdf|<b><span style="color:blue">Lektion 13: Genomsnittlig förändringshastighet</span></b>]]
+
<!-- [[Media: Lektion_13_Genomsnittlig_forandringshastigheta.pdf|<b><span style="color:blue">Lektion 13: Genomsnittlig förändringshastighet</span></b>]] -->
 
<big>
 
<big>
 +
=== <b><span style="color:#931136">Tre exempel på genomsnittlig förändringshastighet</span></b> ===
 
<div class="ovnE">  
 
<div class="ovnE">  
 
<small>
 
<small>
=== <b><span style="color:#931136">Tre exempel på genomsnittlig förändringshastighet</span></b> ===
 
<br>
 
 
<div class="exempel">
 
<div class="exempel">
 
==== <b><span style="color:#931136">Exempel 1 Marginalskatt</span></b> ====
 
==== <b><span style="color:#931136">Exempel 1 Marginalskatt</span></b> ====
 
Martins månadslön höjs från <math> \, 23\;000 \, </math> kr till <math> \, 24\;200 \, </math> kr.
 
Martins månadslön höjs från <math> \, 23\;000 \, </math> kr till <math> \, 24\;200 \, </math> kr.
 
Beräkna <b><span style="color:#931136">marginalskatten</span></b> som är den procentuella andelen av varje lönehöjning som går till skatt.
 
  
 
I [https://www.skatteverket.se/download/18.3152d9ac158968eb8fd2129/manadslon_tabell35.pdf <b><span style="color:blue">Skatteverkets skattetabell</span></b>] för 2017 hittar vi <math> \, 5\;579 \, </math> kr skatt för den gamla och <math> \, 5\;955 \, </math> kr skatt för den nya lönen.
 
I [https://www.skatteverket.se/download/18.3152d9ac158968eb8fd2129/manadslon_tabell35.pdf <b><span style="color:blue">Skatteverkets skattetabell</span></b>] för 2017 hittar vi <math> \, 5\;579 \, </math> kr skatt för den gamla och <math> \, 5\;955 \, </math> kr skatt för den nya lönen.
  
'''Lösning:''' <math> \qquad\qquad\qquad\;\; </math> Betrakta skatten som en funktion av lönen:
+
Beräkna <b><span style="color:#931136">marginalskatten</span></b> som är den procentuella andelen av varje lönehöjning som går till skatt.
 +
 
 +
'''Lösning:''' <math> \qquad\qquad\qquad\;\; </math> Skatten som en [[1.5_Kontinuerliga_och_diskreta_funktioner|<b><span style="color:blue">diskret funktion</span></b>]] av lönen:
 
<table>
 
<table>
 
<tr>
 
<tr>
Rad 62: Rad 61:
  
 
Vi ersätter nu den diskreta skattefunktionen i tabellform med en kontinuerlig funktion som är given med ett algebraiskt uttryck:
 
Vi ersätter nu den diskreta skattefunktionen i tabellform med en kontinuerlig funktion som är given med ett algebraiskt uttryck:
 
  
 
<div class="exempel">
 
<div class="exempel">
Rad 77: Rad 75:
 
::<math> {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; \color{Red} 2 </math>
 
::<math> {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; \color{Red} 2 </math>
  
I intervallet <math> \, 0 \leq x \leq 2 \, </math> har funktionen <math> \, y = x^2 \, </math> den genomsnittliga förändringshastigheten <math> \, \color{Red} 2 </math>.
+
I intervallet <math> \, \color{Red}{0 \leq x \leq 2} \, </math> har funktionen <math> \, y = x^2 \, </math> den genomsnittliga förändringshastigheten <math> \, \color{Red} 2 </math>.
  
 
Dvs funktionen <math> \, y = x^2 \, </math> växer i detta intervall med <math> \, \color{Red} 2 \; y</math>-enheter per <math> \, x</math>-enhet.
 
Dvs funktionen <math> \, y = x^2 \, </math> växer i detta intervall med <math> \, \color{Red} 2 \; y</math>-enheter per <math> \, x</math>-enhet.
Rad 86: Rad 84:
 
</table>
 
</table>
  
'''Geometrisk tolkning''': &nbsp;&nbsp; Om man ersätter kurvan <math> \, y = x^2 \, </math> med en <b><span style="color:red">rät linje</span></b> har denna linje som kallas för kurvans <b><span style="color:red">sekant</span></b>, lutningen <math> \, \color{Red} 2 </math>.
+
'''Geometrisk tolkning''': &nbsp;&nbsp; Om kurvan <math> \, y = x^2 \, </math> i intervallet <math> \, 0 \leq x \leq 2 \, </math> ersätts av en <b><span style="color:red">rät linje</span></b>, kallad <b><span style="color:red">sekant</span></b>, har denna linje lutningen <math> \, \color{Red} 2 </math>.
  
 
:::::::Sekantens <b><span style="color:red">lutning</span></b> är kurvans <b><span style="color:red">genomsnittliga förändringshastighet</span></b> i intervallet <math> \, 0 \leq x \leq 2 </math>.  
 
:::::::Sekantens <b><span style="color:red">lutning</span></b> är kurvans <b><span style="color:red">genomsnittliga förändringshastighet</span></b> i intervallet <math> \, 0 \leq x \leq 2 </math>.  
Rad 98: Rad 96:
  
 
<div class="border-divblue">
 
<div class="border-divblue">
En funktions genomsnittliga förändringshastighet i ett intervall är lutningen till den räta linjen (sekanten) <br> som ersätter funktionen i intervallet.
+
En funktions genomsnittliga förändringshastighet i ett intervall är lutningen till den <b><span style="color:red">räta linjen (sekanten)</span></b> <br> som ersätter funktionen i intervallet.
 
</div>  
 
</div>  
  
Rad 110: Rad 108:
 
<table>
 
<table>
 
<tr>
 
<tr>
   <td>En oljetank läcker genom ett hål i tankens botten. Utströmningen beskrivs av funktionen<span style="color:black">:</span>
+
   <td>En oljetank läcker genom ett hål i tankens botten.
  
:::<math> y \, = \, 4\,x^2 - 380\,x + 9\,000 </math>
+
Utströmningen följer följande funktion som beskriver oljans volym<span style="color:black">:</span>
 +
 
 +
:::<math> y \, = \, f(x) \, = \, 4\,x^2 - 380\,x + 9\,000 </math>
 
där <math> \; \quad \! x \, = \, {\rm Tiden\;i\;minuter} </math>
 
där <math> \; \quad \! x \, = \, {\rm Tiden\;i\;minuter} </math>
  
Rad 119: Rad 119:
 
'''a)''' &nbsp;&nbsp; Rita grafen till funktionen som beskriver utströmningen.
 
'''a)''' &nbsp;&nbsp; Rita grafen till funktionen som beskriver utströmningen.
  
'''b)''' &nbsp;&nbsp; Hur stor är oljans genomsnittliga utströmningshastighet i hela tidsintervallet
+
'''b)''' &nbsp;&nbsp; Hur stor är oljans <b><span style="color:red">genomsnittliga utströmningshastighet</span></b>
  
&nbsp; &nbsp; &nbsp; &nbsp;från början tills tanken är tom.
+
&nbsp; &nbsp; &nbsp; &nbsp; i hela tidsintervallet från början tills tanken är tom.
 
</td>
 
</td>
 
   <td>&nbsp; &nbsp; [[Image: Ex2a.jpg]]</td>
 
   <td>&nbsp; &nbsp; [[Image: Ex2a.jpg]]</td>
Rad 136: Rad 136:
 
:Den exakta tiden får man genom att sätta volymen <math> \, y \, </math> till <math> \, 0 \, </math> dvs genom att lösa 2:a gradsekvationen<span style="color:black">:</span>
 
:Den exakta tiden får man genom att sätta volymen <math> \, y \, </math> till <math> \, 0 \, </math> dvs genom att lösa 2:a gradsekvationen<span style="color:black">:</span>
  
<math> \qquad 4\,x^2 - 380\,x + 9\,000 = 0 \qquad </math> [[1.1_Fördjupning_till_Polynom#Digital_ber.C3.A4kning_av_nollst.C3.A4llen|<b><span style="color:blue">Räknarens ekvationslösare</span></b>]] visar att <math> \, x = 45\, </math> är även den exakta lösningen.
+
::::<math> 4\,x^2 - 380\,x + 9\,000 = 0 </math>
  
:Därför är hela tidsintervallet från början tills tanken är tom<span style="color:black">:</span> <math> \, 0 \leq x \leq 45 \, </math>.
+
:[[Grafritning och ekvationslösning med räknare#Ekvationsl.C3.B6sning_med_minir.C3.A4knare|<b><span style="color:blue">Ekvationslösning med miniräknare</span></b>]] visar att <math> \, x = 45\, </math> är även den exakta lösningen.
 +
 
 +
:Därför är hela tidsintervallet från början tills tanken är tom<span style="color:black">:</span> <math> \qquad \color{Red} {0 \leq x \leq 45} </math>
  
 
:I detta intervall är oljans genomsnittliga utströmningshastighet<span style="color:black">:</span>
 
:I detta intervall är oljans genomsnittliga utströmningshastighet<span style="color:black">:</span>
Rad 144: Rad 146:
 
:::<math> {\Delta y \over \Delta x} = {f(45) \, - \, f(0) \over 45 - 0} = {0 \, - \, 9000 \over 45} = {-9000 \over 45} = \color{Red} {-200} </math>
 
:::<math> {\Delta y \over \Delta x} = {f(45) \, - \, f(0) \over 45 - 0} = {0 \, - \, 9000 \over 45} = {-9000 \over 45} = \color{Red} {-200} </math>
  
:Dvs i intervallet <math> \, 0 \leq x \leq 45 \, </math> sjunker oljans volym med <math> \, 200 \, </math> liter per minut.
+
:Dvs i intervallet <math> \, \color{Red} {0 \leq x \leq 45} \, </math> sjunker oljans volym med <math> \, 200 \, </math> liter per minut.
  
  
Rad 155: Rad 157:
 
:::<math> {\Delta y \over \Delta x} = {f(30) \, - \, f(20) \over 30 - 20} = {1200 \, - \, 3000 \over 30 - 20} = {-1800 \over 10} = \color{Red} {-180} </math>
 
:::<math> {\Delta y \over \Delta x} = {f(30) \, - \, f(20) \over 30 - 20} = {1200 \, - \, 3000 \over 30 - 20} = {-1800 \over 10} = \color{Red} {-180} </math>
  
:Dvs i intervallet <math> \, 20 \leq x \leq 30 \, </math> sjunker oljans volym med <math> \, 180 \, </math> liter per minut.
+
:Dvs i intervallet <math> \, \color{Red} {20 \leq x \leq 30} \, </math> sjunker oljans volym med <math> \, 180 \, </math> liter per minut.
 
</div> <!-- exempel3 -->
 
</div> <!-- exempel3 -->
 
</small>
 
</small>
Rad 166: Rad 168:
 
'''Givet''': &nbsp; &nbsp; &nbsp; &nbsp;Funktionen <math> y \, = \, f\,(x) </math> i form av en formel, tabell eller graf.
 
'''Givet''': &nbsp; &nbsp; &nbsp; &nbsp;Funktionen <math> y \, = \, f\,(x) </math> i form av en formel, tabell eller graf.
  
:::Något intervall på <math> x\, </math>-axeln med givna gränser <math> \, x_1 \, </math> och <math> \, x_2 \, </math> dvs <math> \; x_1 \,\leq\, x \,\leq\, x_2 </math> och <math> \, x_1 \neq x_2 </math>.
+
:::Något intervall på <math> \, x\, </math>-axeln med givna gränser <math> \, x_1 \, </math> och <math> \, x_2 \, </math> dvs <math> \; x_1 \,\leq\, x \,\leq\, x_2 </math> och <math> \, x_1 \neq x_2 </math>.
  
 
'''Sökt''': &nbsp; &nbsp; &nbsp; &nbsp; Funktionens genomsnittliga förändringshastighet i intervallet <math> \, x_1 \,\leq\, x \,\leq\, x_2 </math>.
 
'''Sökt''': &nbsp; &nbsp; &nbsp; &nbsp; Funktionens genomsnittliga förändringshastighet i intervallet <math> \, x_1 \,\leq\, x \,\leq\, x_2 </math>.
  
'''Lösning''': &nbsp; &nbsp; <math> \displaystyle{{\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; {\boxed {f(x_2) \, - \, f(x_1) \over x_2 - x_1}}} \quad {\rm Detta\;uttryck\;har\;använts\;i\;exemplen.} </math>
+
'''Lösning''': &nbsp; &nbsp; <math> \displaystyle {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; \boxed{\displaystyle \frac{f(x_2) \, - \, f(x_1)}{x_2 - x_1}} \quad </math> Detta uttryck har använts i exemplen ovan.
  
Medan uttrycket ovan lämpar sig i de flesta enkla beräkningssammanhang, används i andra sammanhang, t.ex. när derivatan definieras, en annan variant av det.
+
'''Övergång till notation med intervallängden <math> \, h \, </math>''':
  
Denna variant får vi genom att i uttrycket ovan införa en ny beteckning <math> \, h\, </math> för intervallets längd:
+
Uttrycket ovan används inledningsvis pga dess kända form som lutning. Men i fortsättningen kommer vi att använda en annan variant av uttrycket.
 +
 
 +
Denna variant som används vid [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">derivatans definition</span></b>]] får vi genom att i uttrycket ovan införa en ny beteckning <math> \, h\, </math> för <math> \, x</math>-intervallets längd:
  
 
::::<math>\begin{align} h & = x_2 - x_1  \qquad  & | \; + \, x_1 \\
 
::::<math>\begin{align} h & = x_2 - x_1  \qquad  & | \; + \, x_1 \\
Rad 183: Rad 187:
  
 
<div class="border-divblue">
 
<div class="border-divblue">
<b><span style="color:#931136">Funktionen <small><math> \, y = f\,(x)</math></small>:s &nbsp; <span style="color:red">genomsnittliga förändringshastighet</span> &nbsp; i ett intervall av längden <math> \, h \neq 0 \, </math> är:</span></b>
+
<b><span style="color:#931136">Funktionen <math> \, y = f\,(x)\,</math>:s &nbsp; <span style="color:red">genomsnittliga förändringshastighet</span> &nbsp; i ett intervall av längden <math> \, h \neq 0 \, </math> är:</span></b>
  
::::<small><math> \quad \displaystyle {{\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h}} \qquad {\rm i\;\;intervallet } \qquad x_1 \,\leq\, x \,\leq\, x_1 + h </math></small>
+
::::<small><math> \quad \displaystyle {\Delta y \over \Delta x} \; = \; \boxed{\displaystyle \frac{f(x_1 + h) \, - \, f(x_1)}{h}} \qquad {\rm i\;\;intervallet } \qquad x_1 \,\leq\, x \,\leq\, x_1 + h </math>
</div>
+
 
+
Observera att den genomsnittliga förändringshastigheten endast kan definieras i ett givet <b><span style="color:red">intervall</span></b> på <math> \, x</math>-axeln vars längd är <math> \, \neq 0 </math>.
+
 
+
Denna definition för genomsnittlig förändringshastighet användes i [[2.1_Introduktion_till_derivata|<b><span style="color:blue">Aktiviteten</span></b>]] och kommer att användas även i fortsättningen i detta kapitel.
+
 
+
 
+
<div class="exempel">
+
==== <b><span style="color:#931136">Beteckningar</span></b> ====
+
 
+
Uttrycket <math> \quad \displaystyle {{\Delta y \over \Delta x} \; = \; {f(x_1 + h) \, - \, f(x_1) \over h}} \quad </math> har ett antal beteckningar som allihopa är synonymer:
+
 
+
::::::<b><span style="color:red">Genomsnittlig förändringshastighet</span></b>
+
 
+
::::::<b><span style="color:red">Förändringskvot</span></b>
+
 
+
::::::<b><span style="color:red">Ändringskvot</span></b>
+
 
+
::::::<b><span style="color:red">Differenskvot</span></b>
+
  
Kärt barn har många namn.
+
Andra beteckningar som allihopa är synonymer<span style="color:black">:</span></small> <math> \quad </math> <b><span style="color:red">Förändringskvot</span></b> <math> \quad </math> <b><span style="color:red">Ändringskvot</span></b> <math> \quad </math> <b><span style="color:red">Differenskvot</span></b>
 
</div>
 
</div>
  
 
+
Uttrycket ovan användes redan i [[2.1_Introduktion_till_derivata|<b><span style="color:blue">Aktiviteten</span></b>]] och kommer att användas även i fortsättningen i detta kapitel.
 
+
<div class="ovnC">
+
<small>
+
=== <b><span style="color:#931136">Genomsnittlig vs. momentan förändringshastighet</span></b> ===
+
<br>
+
<div class="exempel">
+
==== <b><span style="color:#931136">Exempel 3 Oljetank (forts.)</span></b> ====
+
<table>
+
<tr>
+
  <td>En oljetank läcker genom ett hål i tankens botten enligt<span style="color:black">:</span>
+
 
+
:::<math> y \, = \, 4\,x^2 - 380\,x + 9\,000 </math>
+
där <math> \; \quad \! x \, = \, {\rm Tiden\;i\;minuter} </math>
+
 
+
:::<math> y \, = \, {\rm Oljans\;volym\;i\;liter} </math>
+
 
+
När är oljans utströmningshastighet störst? Kan vi beräkna den?
+
 
+
Beräkna oljans genomsnittliga utströmningshastighet i intervallet <math> \, 0 \,\leq\, x \,\leq\, \color{Red} {0,1} \, </math>.
+
 
+
Tolka resultatet.
+
</td>
+
  <td>&nbsp; &nbsp; &nbsp; &nbsp; [[Image: Ex Olja.jpg]]</td>
+
</tr>
+
</table>
+
'''Lösning:'''
+
 
+
Fysiken lär oss att oljans utströmningshastighet är störst när volymen och därmed trycket på hålet är störst, dvs i början.
+
 
+
Även grafen visar att kurvans lutning är (till beloppet) störst vid tiden <math> \, x = 0\, </math> när oljan har den största volymen <math> \, 9\,000 </math> liter.
+
 
+
Därför är utströmningshastigheten störst vid tiden <math> x = 0 </math> vilken vi dock inte kan beräkna, därför att <math> x = 0 </math> är en <b><span style="color:red">punkt</span></b> och inte ett intervall:
+
 
+
Denna hastighet är inte längre genomsnittlig i något intervall utan <b><span style="color:red">ögonblicklig</span></b> eller <b><span style="color:red">momentan</span></b>. Men vi kan närma oss den.
+
 
+
Oljans genomsnittliga utströmningshastighet i intervallet <math> \, 0 \,\leq\, x \,\leq\, \color{Red} {0,1} \, </math><span style="color:black">:</span>
+
 
+
::<math> f\,(\color{Red} {0,1}) = 4 \cdot \color{Red} {0,1}\,^2 - 380 \cdot \color{Red} {0,1} + 9\,000 = 8962,04 </math>
+
 
+
::<math> {\Delta y \over \Delta x} = {f(\color{Red} {0,1}) \, - \, f(0) \over \color{Red} {0,1} - 0} = {8962,04 \, - \, 9000 \over \color{Red} {0,1}} = {-37,96 \over {\color{Red} {0,1}}} \, = \, \color{Red} {-379,6} </math>
+
 
+
I intervallet <math> \, 0 \leq x \leq \color{Red} {0,1} \, </math> sjunker oljans volym med <math> \, 379,6\, </math> liter per minut.
+
 
+
'''Tolkning''': Detta är ett <b><span style="color:red">närmevärde</span></b> för den momentana utströmningshastigheten vid tiden <math> \, x = 0\, </math> (exakta värdet).
+
 
+
Faktiskt är det inget dåligt närmevärde, för det exakta värdet kommer att visa sig vara <math> -380 </math>, se [[Detta avsnitt ingår inte i demon.|<b><span style="color:blue">Derivatans definition</span></b>]].
+
 
+
För att kunna definiera derivatan behöver vi konceptet [[2.3 Gränsvärde|<b><span style="color:blue">Gränsvärde</span></b>]], där man låter intervallets längd gå mot <math> \, 0\, </math><span style="color:black">:</span>  <math> \quad \bf{ \color{Red} {\boxed{h \to 0}} } </math>
+
</div> <!-- exempel3 -->
+
</small>
+
 
+
 
+
</div> <!-- "ovnC" -->
+
 
+
 
+
  
  
Rad 283: Rad 213:
  
  
[[Matte:Copyrights|Copyright]] © 2011-2017 Math Online Sweden AB. All Rights Reserved.
+
 
 +
 
 +
 
 +
[[Matte:Copyrights|Copyright]] © 2020 [https://www.techpages.se <b><span style="color:blue">TechPages AB</span></b>]. All Rights Reserved.

Nuvarande version från 2 maj 2020 kl. 20.26

        <<  Förra avsnitt          Genomgång          Övningar          Nästa avsnitt  >>      


Tre exempel på genomsnittlig förändringshastighet

Exempel 1 Marginalskatt

Martins månadslön höjs från \( \, 23\;000 \, \) kr till \( \, 24\;200 \, \) kr.

I Skatteverkets skattetabell för 2017 hittar vi \( \, 5\;579 \, \) kr skatt för den gamla och \( \, 5\;955 \, \) kr skatt för den nya lönen.

Beräkna marginalskatten som är den procentuella andelen av varje lönehöjning som går till skatt.

Lösning: \( \qquad\qquad\qquad\;\; \) Skatten som en diskret funktion av lönen:

\( x\, \) \( y\, \)
\( 23\,000 \) \( 5\,579\)
\( 24\,200 \) \( 5\,955 \)


\( \quad\;\; x \, = \, \) Månadslönen i kr.

\( \quad\;\; y \, = \, \) Skatten i kr.

\( \quad \) Diskret loneSkattfkt 235.png

Skattefunktionens lutning, dvs kvoten mellan skattehöjning och lönehöjning kallas för skattens genomsnittliga förändringshastighet:

\[ {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} = {{\rm Skattehöjningen} \over {\rm Lönehöjningen}} = {5\,955 - 5\,579 \over 24\,200 - 23\,000} \; = \; {376 \over 1200} \; = \; \color{Red} {0,313} \; = \; 31,3 \, \%\]

I intervallet \( \; 23\,000 \,\leq\, x \,\leq\, 24\,200 \, \) har funktionen \( \, y \, \) den genomsnittliga förändringshastigheten \( \; \color{Red} {0,313} \).

Dvs \( \, y \, \) växer i detta intervall med \( \color{Red} {0,313} \; y\)-enheter per \( x\)-enhet. Med andra ord, marginalskatten är lutningen i figuren ovan.

Matematisk tolkning:  Marginalskatten \( = \) Skattens genomsnittliga förändringshastighet när skatten anses som en funktion av lönen.

Ekonomisk tolkning:  Marginalskatten är \( \, 31,3 \, \% \), dvs Martin måste betala \( \, 31,3\,\) öre i skatt för varje mer intjänad krona.


Vi ersätter nu den diskreta skattefunktionen i tabellform med en kontinuerlig funktion som är given med ett algebraiskt uttryck:

Exempel 2 Kvadratisk funktion

Givet:        Funktionen \( \, y \, = \, f(x) \, = \, x^2 \)
Intervallet \( \, 0 \,\leq\, x \,\leq\, 2 \)

Sökt:         Funktionens genomsnittliga förändringshastighet i intervallet \( \, 0 \leq x \leq 2 \).

Lösning:

\[ {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {f(2) \, - \, f(0) \over 2 - 0} \; = \; {2^2 \, - \, 0^2 \over 2 - 0} \; = \; {4 \, - \, 0 \over 2} \; = \; {4 \over 2} \; = \; \color{Red} 2 \]

I intervallet \( \, \color{Red}{0 \leq x \leq 2} \, \) har funktionen \( \, y = x^2 \, \) den genomsnittliga förändringshastigheten \( \, \color{Red} 2 \).

Dvs funktionen \( \, y = x^2 \, \) växer i detta intervall med \( \, \color{Red} 2 \; y\)-enheter per \( \, x\)-enhet.

    Ex1a.jpg

Geometrisk tolkning:    Om kurvan \( \, y = x^2 \, \) i intervallet \( \, 0 \leq x \leq 2 \, \) ersätts av en rät linje, kallad sekant, har denna linje lutningen \( \, \color{Red} 2 \).

Sekantens lutning är kurvans genomsnittliga förändringshastighet i intervallet \( \, 0 \leq x \leq 2 \).


Generellt gäller:

En funktions genomsnittliga förändringshastighet i ett intervall är lutningen till den räta linjen (sekanten)
som ersätter funktionen i intervallet.



Exempel 3 Oljetank

En oljetank läcker genom ett hål i tankens botten.

Utströmningen följer följande funktion som beskriver oljans volym:

\[ y \, = \, f(x) \, = \, 4\,x^2 - 380\,x + 9\,000 \]

där \( \; \quad \! x \, = \, {\rm Tiden\;i\;minuter} \)

\[ y \, = \, {\rm Oljans\;volym\;i\;liter} \]

a)    Rita grafen till funktionen som beskriver utströmningen.

b)    Hur stor är oljans genomsnittliga utströmningshastighet

        i hela tidsintervallet från början tills tanken är tom.

    Ex2a.jpg

c)    Beräkna oljans genomsnittliga utströmningshastighet i tidsintervallet \( \, 20 \leq x \leq 30 \, \).

Lösning:

a)  Se grafen ovan.

b)  Grafen tyder på att tanken kommer att vara tom efter ca. \( \, 45 \, \) minuter.

Den exakta tiden får man genom att sätta volymen \( \, y \, \) till \( \, 0 \, \) dvs genom att lösa 2:a gradsekvationen:
\[ 4\,x^2 - 380\,x + 9\,000 = 0 \]
Ekvationslösning med miniräknare visar att \( \, x = 45\, \) är även den exakta lösningen.
Därför är hela tidsintervallet från början tills tanken är tom: \( \qquad \color{Red} {0 \leq x \leq 45} \)
I detta intervall är oljans genomsnittliga utströmningshastighet:
\[ {\Delta y \over \Delta x} = {f(45) \, - \, f(0) \over 45 - 0} = {0 \, - \, 9000 \over 45} = {-9000 \over 45} = \color{Red} {-200} \]
Dvs i intervallet \( \, \color{Red} {0 \leq x \leq 45} \, \) sjunker oljans volym med \( \, 200 \, \) liter per minut.


c)  Oljans genomsnittliga utströmningshastighet i intervallet \( \, 20 \leq x \leq 30 \, \):

\[ f\,(30) = 4 \cdot 30^2 - 380 \cdot 30 + 9\,000 = 1200 \]
\[ f\,(20) = 4 \cdot 20^2 - 380 \cdot 20 + 9\,000 = 3000 \]
\[ {\Delta y \over \Delta x} = {f(30) \, - \, f(20) \over 30 - 20} = {1200 \, - \, 3000 \over 30 - 20} = {-1800 \over 10} = \color{Red} {-180} \]
Dvs i intervallet \( \, \color{Red} {20 \leq x \leq 30} \, \) sjunker oljans volym med \( \, 180 \, \) liter per minut.



Allmän definition

Givet:        Funktionen \( y \, = \, f\,(x) \) i form av en formel, tabell eller graf.

Något intervall på \( \, x\, \)-axeln med givna gränser \( \, x_1 \, \) och \( \, x_2 \, \) dvs \( \; x_1 \,\leq\, x \,\leq\, x_2 \) och \( \, x_1 \neq x_2 \).

Sökt:         Funktionens genomsnittliga förändringshastighet i intervallet \( \, x_1 \,\leq\, x \,\leq\, x_2 \).

Lösning:     \( \displaystyle {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} \; = \; {y_2 - y_1 \over x_2 - x_1} \; = \; \boxed{\displaystyle \frac{f(x_2) \, - \, f(x_1)}{x_2 - x_1}} \quad \) Detta uttryck har använts i exemplen ovan.

Övergång till notation med intervallängden \( \, h \, \):

Uttrycket ovan används inledningsvis pga dess kända form som lutning. Men i fortsättningen kommer vi att använda en annan variant av uttrycket.

Denna variant som används vid derivatans definition får vi genom att i uttrycket ovan införa en ny beteckning \( \, h\, \) för \( \, x\)-intervallets längd:

\[\begin{align} h & = x_2 - x_1 \qquad & | \; + \, x_1 \\ x_1 + h & = x_2 \\ \end{align}\]

Om vi nu i det inramade uttrycket ovan ersätter \( \, x_2 \) med \( \,x_1 + h \) och \( \, x_2 - x_1 \) med \( \, h \), får vi den allmänna definitionen:

Funktionen \( \, y = f\,(x)\,\):s   genomsnittliga förändringshastighet   i ett intervall av längden \( \, h \neq 0 \, \) är:

\( \quad \displaystyle {\Delta y \over \Delta x} \; = \; \boxed{\displaystyle \frac{f(x_1 + h) \, - \, f(x_1)}{h}} \qquad {\rm i\;\;intervallet } \qquad x_1 \,\leq\, x \,\leq\, x_1 + h \)

Andra beteckningar som allihopa är synonymer: \( \quad \) Förändringskvot \( \quad \) Ändringskvot \( \quad \) Differenskvot

Uttrycket ovan användes redan i Aktiviteten och kommer att användas även i fortsättningen i detta kapitel.


Internetlänkar

http://www.youtube.com/watch?v=08yI3grz17I

http://www.youtube.com/watch?v=Cze2KrRhHiM

http://www.iceclimbers.net/fil/matematik_c/12.genomsnittlig_forandringshastighet.pdf

http://ingforum.haninge.kth.se/matCD/F%F6rel%E4sning01.pdf






Copyright © 2020 TechPages AB. All Rights Reserved.