3.1 Lösning 4c

Från Mathonline
Hoppa till: navigering, sök

Ovn 4c.jpg

Derivatans graf visar följande:

För alla \( {\color{White} {xxxxxx}} x < 1 {\color{White} x} \) ligger kurvan under \( \, x\)-axeln, dvs \(\, f\,'(x) < 0 \).

I intervallet \( {\color{White} x} 1 < x < 5 {\color{White} x} \) ligger kurvan över \( \, x\)-axeln, dvs \(\, f\,'(x) > 0 \).

För alla  \( {\color{White} {xxxxxx}} x > 5 {\color{White} x} \) ligger kurvan under \( \, x\)-axeln, dvs \(\, f\,'(x) < 0 \).

Slutsats:

För alla \( {\color{White} {xxxxxx}} x < 1 {\color{White} x} \) är \(\, f(x) \) avtagande.

I intervallet \( {\color{White} x} 1 < x < 5 {\color{White} x} \) är \(\, f(x) \) växande.

För alla  \( {\color{White} {xxxxxx}} x > 5 {\color{White} x} \) är \(\, f(x) \) avtagande.