1.3 Lösning 12b
I övning 12a) hade vi fått följande delfaktorisering av \( P(x)\,\) \[ \begin{align} P(x) = x^4 + 3\,x^3 - 7\,x^2 - 27\,x - 18 & = (x+3)\cdot (x-3) \cdot Q(x) \\ & = (x+3)\cdot (x-3) \cdot (x^2 + 3\,x + 2) \end{align} \]
För en fullständig faktorisering återstår faktoriseringen av polynomet\[ Q(x) = x^2 + 3\,x + 2 \]
Därför sätter vi upp ekvationen\[ x^2 + 3\,x + 2 = 0 \]
Vietas formler ger \[ \begin{align} x_1 + x_2 & = -3 \\ x_1 \cdot x_2 & = 2 \end{align}\]
Det är enkelt att få lösningarna \( x_1 = -1\, \) och \( x_2 = -2\, \) ur dessa relationer.
Således kan \( Q(x)\, \) faktoriseras så här\[ Q(x)= x^2 + 3\,x + 2 = (x + 1) \cdot (x + 2) \]
Detta resultat ger den fullständiga faktoriseringen av \( P(x)\, \)\[ P(x) = x^4 + 3\,x^3 - 7\,x^2 - 27\,x - 18 = (x+3)\cdot (x-3) \cdot (x + 1) \cdot (x + 2) \]