1.5 Lösning 6a

Från Mathonline
Version från den 21 september 2012 kl. 14.09 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök

Vi inför följande obekant\[ x\, \] = Förändringsfaktorn för ett år.

Efter 1 år finns det på kontot\[ 5\,000 \cdot x \]

Efter 2 år finns det på kontot\[ (5\,000 \cdot x) \cdot x = 5\,000 \cdot x^2 \]

\( \cdots \)

Efter 10 år finns det på kontot\[ 5\,000 \cdot x \cdot x \cdot\,\cdots\,\cdot x = 5\,000 \cdot x^{10} \]

Fördubbling ger följande potensekvation som löses med rotdragning\[\begin{align} 5\,000 \cdot x^{10} & = 10\,000 \\ x^{10} & = 2 \qquad & | \; \sqrt[10]{\;\;} \\ \sqrt[10]{x^{10}} & = \sqrt[10]{2} \\ x & = \sqrt[10]{2} \\ \end{align}\]

För att kunna beräkna går vi över från rotnotation till potens med bråktal som exponent\[\begin{align} x & = \sqrt[10]{2} \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ x & = 2^{1 \over 10} \\ \end{align}\]