1.2 Lösning 3c

Från Mathonline
Version från den 14 april 2011 kl. 12.54 av Taifun (Diskussion | bidrag)

(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök

Att beräkna polynomets nollställen innebär att sätta polynomet (från a)) till 0 och lösa följande ekvation\[ P(x) = 2\,x^2 +\,21\,x = 0 \]

Eftersom polynomet saknar konstant term kan man bryta ut x som är den gemensamma faktorn i polynomets båda termer för att sedan kunna använda nollproduktmetoden\[\begin{align} 2\,x^2 +\,21\,x & = 0 \\ x\,(2\,x +\,21) & = 0 \\ x_1 & = 0 \\ 2\,x_2 +\,21 & = 0 \\ x_2 & = -10,5 \\ \end{align}\]

Polynomets nollställen är alltså \( x_1 = 0\, \) och \( x_2 = -10,5\, \).