1.7 Lösning 5a
Från Mathonline
Version från den 12 april 2011 kl. 22.55 av Taifun (Diskussion | bidrag)
\(\begin{align} 5 \cdot 6\,^x & = 7\,^x \; & &\;| \;\lg\,(\,\cdot\,) \\ \lg\,(5 \cdot 6\,^x) & = \lg\,(7\,^x) \; & &: \;\text{Logaritmlag 1 i VL}\\ \lg\,5 + \lg\,(6\,^x) & = \lg\,(7\,^x) \; & &: \;\text{Logaritmlag 3}\\ \lg\,5 + x\cdot\lg\,6 & = x\cdot\lg\,7 \; & &\;| \; - x\cdot\lg\,7 -\lg\,5 \\ x\cdot\lg\,6 - x\cdot\lg\,7 & = -\lg\,5 \; & &: \;\text{Bryt ut x i VL}\\ x\cdot(\lg\,6 - \lg\,7) & = -\lg\,5 \\ x & = {-\lg\,5 \over \lg\,6 - \lg\,7} \end{align}\)