1.5 Lösning 2d
Från Mathonline
Version från den 10 mars 2011 kl. 00.48 av Taifun (Diskussion | bidrag)
Påstående:
- \[ \sqrt{a^2 \cdot b^2} = a \cdot b \]
Bevis:
Påståendet kan bevisas genom att använda potenslagen \( (a \cdot b)^x = a^x \cdot b^x \)\[ \sqrt{a^2 \cdot b^2} = (a^2 \cdot b^2)^{1 \over 2} = a^{2\cdot {1 \over 2}} \cdot b^{2\cdot {1 \over 2}} = a^1 \cdot b^1 = a \cdot b \]
Att exemplet stämmer\[ \sqrt{9 \cdot 4} = \sqrt{36} = 6 = 3 \cdot 2 \] är bara en följd av den allmänna regeln ovan.
Generellt kan man säga att det går att dra roten ur en produkt genom att dra roten ur dess faktorer.