1.3 Decimaltal

Från Mathonline
Version från den 17 april 2019 kl. 13.42 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök
        <<  Förra avsnitt          Genomgång          Avrundning & värdesiffror          Övningar          Nästa demoavsnitt  >>      


Decimaltal 60a.jpg


Tiondelssiffran \( \quad\, {\color{LimeGreen} 1} \, \) har värdet \( \, {\color{Red}{0,1}} \, \).

Hundradelssiffran \( {\color{LimeGreen} 7} \, \) har värdet \( \, {\color{Red}{0,07}} \, \).

Tusendelssiffran \( \;\, {\color{LimeGreen} 8} \, \) har värdet \( \, {\color{Red}{0,008}} \, \).

\( 235 \, + \, {\color{Red}{0,1 \, + \, 0,07 \, + \, 0,008}} = \boxed{235\,{\bf{\color{Red},}}\,{\color{LimeGreen} {178}}} \)


Exempel på viktiga decimaltal


\( \displaystyle{ 0,5 \, = \, {1 \over 2} } \)

\( \displaystyle{ 0,25 \, = \, {1 \over 4} } \)

\( \displaystyle{ 0,75 \, = \, {3 \over 4} } \)

\( \qquad\qquad \)

\( \displaystyle{ 0,1 \, = \, {1 \over 10} } \)

\( \displaystyle{ 0,01 \, = \, {1 \over 100} } \)

\( \displaystyle{ 0,001 \, = \, {1 \over 1000} } \)

\( \qquad\quad \displaystyle{ 0,333\,333\,\ldots \, = \, {1 \over 3} } \)

\( \qquad\quad \displaystyle{ 0,666\,666\,\ldots \, = \, {2 \over 3} } \)


Avrundningsregeln


Om siffran efter avrundningssiffran är:

\( \quad\; 0, \, 1, \, 2, \, 3 \; {\rm eller} \; 4 , \quad \) avrunda nedåt.

\( \quad\; 5, \, 6, \, 7, \, 8 \; {\rm eller} \; 9 , \quad \) avrunda uppåt.

Avrundningssiffran är den siffra efter vilken

alla decimaler ska kapas av.


Värdesiffror


   Tal       Antal värdesiffror   
\( \qquad 3,14 \quad \) Tre
\( \qquad 0,05 \quad \) En
\( \qquad 0,072 \quad \) Två
\( \qquad 0,40300 \quad \) Fem
\( \qquad 1,006 \, \) Fyra


Från decimaltal till bråk


Skriv \( \; 0,75 \; \) i bråkform.

Lösning:

\( 0,75 \, = \, \displaystyle {75 \over 100} \, = \, {15 \cdot \cancel{\color{Red} 5} \over 20 \cdot \cancel{\color{Red} 5}} \, = \, {15 \over 20} \, = \)

\( \qquad\; = \; \displaystyle {3 \cdot \cancel{\color{Red} 5} \over 4 \cdot \cancel{\color{Red} 5}} \; = \; {3 \over 4} \)

Metoden:

1.   Skriv som bråk med \( 10\)-potens i nämnaren.

2.   Förkorta bråket så långt som möjligt.


Från bråk till decimaltal


Skriv \( \; \displaystyle{3 \over 4} \; \) som decimaltal.

Lösning:

\( \displaystyle {3 \over 4} \; = \; {3 \cdot {\color{Red} 5} \over 4 \cdot {\color{Red} 5}} \; = \; {15 \over 20} \; = \; {15 \cdot {\color{Red} 5} \over 20 \cdot {\color{Red} 5}} \; = \displaystyle {75 \over 100} \; = \)

\( \quad\; = \; 0,75 \)

Metoden:

1.   Förläng bråket tills nämnaren blir en \( 10\)-

      potens.

2.   Skriv resultatet från 1 till decimaltal.


Periodisk decimalutveckling


Skriv \( \; 0,333\,333\,\ldots \; \) i bråkform.

Lösning:

\( 10 \; \cdot \; 0,333\,333\,\ldots \; = \; 3,333\,333\,\ldots \quad {\rm (I)} \)

\( \underline{\;1 \;\, \cdot \; 0,333\,333\,\ldots \; = \; 0,333\,333\,\ldots} \quad {\rm (II)} \)

Vi bildar \( \; {\rm (I)-(II)} \):

\( (10-1) \cdot 0,333\,\ldots = \; 3 \)

\( \quad\;\;\; 9 \quad\, \cdot \, 0,333\ldots = \; 3 \)

\( \qquad\; 0,333\,333\,\ldots \: = \: \displaystyle{3 \over 9} \; = \; {1 \cdot \cancel{\color{Red} 3} \over 3 \cdot \cancel{\color{Red} 3}} \)

\( \qquad\; 0,333\,333\,\ldots \: = \: \displaystyle{1 \over 3} \)


   Tal       Perioden     Skrivsätt 
\( \;\; 0,333\,333\,\ldots \) 3 \( 0,\bar{3} \)
\( \;\; 0,666\,666\,\ldots \) 6 \( 0,\bar{6} \)
\( \;\; 0,18181818\,\ldots \) 18 \( 0,\overline{18} \)
\( \;\; 1,16666666\,\ldots \) 6 \( 1,1\bar{6} \)
\( \;\; 0,09090909\,\ldots \) 09 \( 0,\overline{09} \)
\( \;\; 0,045454545\,\ldots \) 45 \( 0,0\overline{45} \)




Copyright © 2019 TechPages AB. All Rights Reserved.