1.5a Lösning 10c

Från Mathonline
Version från den 3 juli 2015 kl. 20.22 av Taifun (Diskussion | bidrag)

(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök

Övn 10.png

Till synes visar resultatet helt identiska kurvor. Men från övningens a)-del vet vi:

Funktionen \( f(x)\, \) har två diskontinuiteter:

\[ x_1 = -2 \; \quad {\rm är\;en\;hävbar\;diskontinuitet.} \]

\[ x_2 = 2 \qquad {\rm är\;en\;icke-hävbar\;diskontinuitet.} \]

Den hävbara diskontinuiteten ses inte i grafen till \( f(x)\, \). Men i själva verket finns ett "hål" eller en "lucka" i \( x = -2\, \) som man inte ser med blotta ögat. Så funktionen \( f(x)\, \) är inte definierad för \( x = -2\, \) och har en diskontinuitet där. Att den inte visas som ett oändlighetsställe i grafen beror på att den är hävbar. Den andra, icke-hävbara diskontinuiteten \( x_2 = 2 \, \) visas tydligt med ett oändlighetsställe.

Funktionen \( g(x)\, \) däremot är både definierad och kontinuerlig för \( x = -2\, \). Det finns inget "hål" i grafen där. Men även \( g(x)\, \) är inte definierad för \( x = 2 \, \) och har - precis som \( f(x)\, \) - en icke-hävbar diskontinuitet av typ oändlighetsställe där, vilket även visas i grafen.