1.1 Lösning 5a
Från Mathonline
Version från den 30 januari 2011 kl. 21.56 av Taifun (Diskussion | bidrag)
Lösningen av övning 4b visar att ekvationen \( \sqrt{x^2 + 1} = x - 3 \) saknar lösning. Därför skär graferna till \( y_1 = \sqrt{x^2 + 1} \) (blå kurva) och \( y_2 = x - 3\, \) (grön linje) inte varandra:
Den räta linjens lutning är 1. Grafen visar att man endast behöver höja denna lutning för att få en skärningspunkt mellan kurvan och linjen. En höjning av lutningen till t.ex. 3 skulle räcka för en skärningspunkt. Därför borde följande rotekvation ha en sann rot:
- \[ \sqrt{x^2 + 1} = 3\,x - 3 \]
Att detta är fallet visar graferna till \( y_1 = \sqrt{x^2 + 1} \) (blå kurva) och \( y_2 = 3\,x - 3 \) (grön linje). De skär varandra: