3.5 Lösning 2c

Från Mathonline
Version från den 1 februari 2015 kl. 13.55 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök

Vi deriverar målfunktionen:

\[ A\,(x) \, = \, 6\,x -\,x^2 \]
\[ A'(x) \, = \, -\,2\,x \, + \, 6 \]
\[ A''(x) \, = \, -\,2 \]

Derivatans nollställe:

\[\begin{array}{rcrcl} A'(x) & = & -\,2\,x \, + \, 6 & = & 0 \\ & & 6 & = & 2\,x \\ & & x & = & 3 \end{array}\]

Andraderivatans tecken för \( \, x = 3 \, \):

\( A''(3) = \displaystyle -2 \, < \, 0 \quad \Longrightarrow \quad A(x) \, \) har ett lokalt maximum i \( \, x = 3 \, \).

För \( \, x = 3 \, \) blir rektangelns area maximal.