2.4 Lösning 10b

Från Mathonline
Version från den 19 oktober 2014 kl. 15.30 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök

Eftersom tangenten är parallell till linjen \( y = x - 4\, \) som har lutningen 1, är även tangentens lutningen:

\[ k \, = \, 1 \]

Å andra sidan har tangenten samma lutning som själva kurvan    \( y = f(x) = 2\,x^2 - 3\,x - 4 \)    i den okända beröringspunkten \( x \). Kurvans lutning i denna punkt är   \( f\,'(x) \). För att få fram \( x\, \) bildar vi derivatan, sätter den till tangentens lutningen \( k = 1 \) och beräknar beröringspunkten \( \,x\)-koordinat:

\[\begin{array}{lcll} f(x) & = & 2\,x^2 - 3\,x - 4 \\ f\,'(x) & = & 4\,x - 3 & = & 1 \\ & & 4\,x & = & 4 \\ & & x & = & 1 \\ \end{array}\]

För att få fram beröringspunktens \( \,y\)-koordinat sätter vi \( \,x\)-koordinaten i kurvans ekvation:

\[ y = f(1) = 2 \cdot 1^2 - 3 \cdot 1 - 4 = 2 - 3 - 4 = -5 \]

+++ Sedan sätter vi in beröringspunktens koordinater i tangentens ekvation, eftersom beröringspunkten ligger på tangenten:

\[\begin{array}{rcl} y & = & 3\,x \, + \, m \\ -5 & = & 3 \cdot (-1) \, + \, m \\ -5 & = & -3 \, + \, m \\ -5 + 3 & = & m \\ - 2 & = & m \end{array}\]

Tangentens ekvation:

\[ y \, = \, 3\,x \, - \, 2 \]