1.1 Lösning 1b

Från Mathonline
Version från den 4 augusti 2014 kl. 15.43 av Taifun (Diskussion | bidrag)

(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök

Vi skulle kunna säga direkt från början att ekvationen saknar lösning, därför att roten ur ett tal (i det här fallet x) inte kan vara negativt, dvs -9, se Rotbegreppet.

Annars kommer man till samma resultat om man löser ekvationen formellt och gör en prövning\[\begin{align} \sqrt{x} & = - 9 \qquad & | \; (\;\;\;)^2 \\ x & = (-9)^2 \\ x & = 81 \\ \end{align}\]

Prövning:

VL \( {\color{White} x} \sqrt{81} = 9 \)

HL \( {\color{White} x} - 9 \, \)

VL \( \not= \) HL \( \Rightarrow \quad x = 81 \) är en falsk rot och måste förkastas, vilket innebär att ekvationen saknar lösning.

\( x = 81\, \) är lösning till ekvationen \( \sqrt{x} = 9 \), inte till \( \sqrt{x} = - 9 \).