1.5 Fördjupning till Kontinuerliga och diskreta funktioner
Teori | Övningar | Fördjupning | Internetlänkar |
Lektion 8 Kontinuerliga & diskreta funktioner
Innehåll
Allmän definition
I teoridelen sade vi att kontinuerlig betydde sammanhängande (motsatsen till diskret).
Som exempel ritade vi grafen till en enkel linjär funktion med en genomdragen linje. Man kunde rita den utan att lyfta pennan. Vi kallade den kontinuerlig därför att dess definitionsmängd var kontinuerlig. Som exempel på kontinuerliga mängder nämnde vi de rationella och reella talen. Som ytterligare exempel på kontinuerliga funktioner nämndes polynomfunktionerna.
Allt detta är sant. Men förhållandena i tillämpningarna är ofta mer komplicerade än så. I vissa fall kan vi med verktygen ovan inte avgöra om en funktion är kontinuerlig. Vi behöver en exakt definition.
Definition:
- En funktion \(f(x)\,\) är kontinuerlig för \( {\color{Red} x = a}\, \) om:
- \[ f(x) \to f(a)\, \] när \( x \to a \)
Den sista raden läses\[ f(x)\, \] går mot \( f(a)\, \) när \( x\, \) går mot \( a\, \).
Observera att definitionen är punktvis, dvs den talar om när en funktion är kontinuerlig för ett visst \( {\color{Red} x}\, \)-värde nämligen för \( {\color{Red} x = a}\, \). Det finns ingen föreskrift för att avgöra om en funktion i sin helhet är kontinuerlig.
Exempel 1
Låt oss återuppta ett exempel som behandlades i Fördjupning till rationella uttryck nämligen funktionen:
- \[ y = {1 \over x} \]
Grafen ser ut så här:
Låt oss undersöka om den enligt definition är kontinuerlig för \( {\color{Red} x = 0}\, \). Då borde \( f(x) \to f(0)\, \) när \( x \to 0 \). Men
Den väsentliga skillnaden mellan denna graf och polynomfunktioners graf är att den här har två skilda grenar, medan en polynomfunktions graf har ett sammanhängande förlopp. Uttryckt i matematiska termer säger man att en polynomfunktion är kontinuerlig. Ett polynoms graf kan ritas utan att man lyfter pennan från papperet, medan i grafen ovan måste vid x = 0 pennan lyftas för att gå från grafens ena gren till den andra. Dvs grafen är inte sammanhängande i x = 0. Man säger att funktionen är icke-kontinuerlig i x = 0.
Den matematiska anledningen till denna diskontinuitet är att funktionen \( y = 1/x \) inte har något värde för x = 0. Division med 0 ger inget tal och är därmed odefinierad. När x närmar sig 0 går y mot oändligheten, vilket tydligt framgår av grafen. Man säger: Funktionen \( y = {1/x} \) är inte definierad för x = 0. Man måste undanta x = 0 från funktionens definitionsmängd\[ y = {1/x} \] är definierad för alla x utom för x = 0.
Icke-definierbarheten och diskontinuiteten för vissa x är något typiskt för alla rationella funktioner och det är det som skiljer dem från polynomfunktioner som är definierade och kontinuerliga för alla x.