1.5 Lösning 6a
Vi inför följande obekant\[ x\, \] = Förändringsfaktorn för ett år.
Efter 1 år finns det på kontot\[ 5\,000 \cdot x \]
Efter 2 år finns det på kontot\[ (5\,000 \cdot x) \cdot x = 5\,000 \cdot x^2 \]
\( \cdots \)
Efter 10 år finns det på kontot\[ 5\,000 \cdot x \cdot x \cdot\,\cdots\,\cdot x = 5\,000 \cdot x^{10} \]
Fördubbling ger följande potensekvation som löses med rotdragning\[\begin{align} 5\,000 \cdot x^{10} & = 10\,000 \\ x^{10} & = 2 \qquad & | \; \sqrt[10]{\;\;} \\ \sqrt[10]{x^{10}} & = \sqrt[10]{2} \\ x & = 2 \\ \end{align}\]
Alternativt (med bråktal som exponent)\[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]
+++