Potenser

Från Mathonline
Version från den 19 november 2016 kl. 17.22 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök
        <<  Tillbaka till Polynom          Genomgång          Övningar      


Potenser är ett repeterande underavsnitt i avsnittet Polynom. Övningar till Potenser finns separat i fliken ovan.

Hur räknar du?

Hur raknar du Potenser 20.jpg \[ {\rm {\color{Red} {OBS!\quad Vanligt\,fel:}}} \quad\; 2\,^3 \; = \; 6 \]

\[ \qquad\quad\;\, {\rm Rätt:} \qquad\qquad\! 2\,^3 \; = \; 2 \cdot 2 \cdot 2 \; = \; 4 \cdot 2 \; = \; 8 \]


Felet beror på att man blandar ihop två olika räkneoperationer: multiplikationen med upphöjt till.

I själva verket betyder \( \, 2\,^{\color{Red} 3} \, \) inte \( \, 2 \cdot 3 \, \) utan \( \, \underbrace{2 \cdot 2 \cdot 2}_{{\color{Red} 3}\;\times} \, \) som sedan förkortas till \( \, 2\,^{\color{Red} 3} \).

Vad är en potens?

Exempel på potens:

\[ 2\,^{\color{Red} 3} \; = \;\; \underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times} \]

Potens = upprepad multiplikation

av \( \, 2 \, \) med sig själv, \( \, {\color{Red} 3} \, \) gånger.

           Potens Bas Exponent 80.jpg


\( \, 2\,^3 \, \) läses \( \, {\color{Red} 2} \) upphöjt till\( \, {\color{Red} 3} \, \) och kallas för  potens. \( \, 2\, \) heter basen och \( \, 3 \, \) exponenten.

Exponenten \( \, {\color{Red} 3} \, \) är inget tal som ingår i beräkningen, utan endast en information om att \( \, 2 \, \) ska multipliceras \( \, {\color{Red} 3} \, \) gånger med sig själv (jfr. upprepad addition).

Därför det är fel att multiplicera \( \, 2 \, \) med \( \, {\color{Red} 3} \, \) när man ska beräkna \( \, 2\,^{\color{Red} 3} \).


Exempel

Förenkla: \( \qquad \displaystyle{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \)


Lösning: \( \qquad \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \over 2 \cdot 2 \cdot 2 \cdot 2} \, = \, {2 \cdot 2 \cdot 2 \quad \cdot \quad 2 \cdot \cancel{2 \cdot 2 \cdot 2 \cdot 2} \over \cancel{2 \cdot 2 \cdot 2 \cdot 2}} \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)

OBS!   Förenkla alltid först, räkna sedan!

Snabbare: \( \qquad\!\! \displaystyle{{2\,^3 \cdot \; 2\,^5 \over 2\,^4} \, = \, 2\,^{3\,+\,5\,-\,4} \, = \, 2\,^4 \, = \, 2 \cdot 2 \cdot 2 \cdot 2 \, = \, 4 \cdot 4 \, = \, 16} \)


För att förstå den snabbare lösningen måste man känna till:

Potenslagarna

Följande lagar gäller för potenser där basernna \( \, a,\,b \, \) är tal \( \, \neq 0 \, \) och exponenterna \( \, x,\,y \, \) är godtyckliga tal:


Första potenslagen: \( \qquad\qquad\quad\;\, a^x \cdot a^y \; = \; a\,^{x \, + \, y} \qquad\qquad \)


Andra potenslagen: \( \qquad\qquad\qquad\;\;\; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \qquad\qquad \)


Tredje potenslagen: \( \qquad\qquad\qquad \displaystyle {(a^x)^y} \; = \; a\,^{x \, \cdot \, y} \qquad\qquad \)


Lagen om nollte potens: \( \qquad\qquad\quad\;\;\, a\,^0 \; = \; 1 \qquad\qquad \)


Lagen om negativ exponent: \( \qquad\quad\;\;\; a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \qquad\qquad \)


Potens av en produkt: \( \qquad\qquad\;\, (a \cdot b)\,^x \; = \; a\,^x \cdot b\,^x \qquad\qquad \)


Potens av en kvot: \( \qquad\qquad\qquad\, \left(\displaystyle {a \over b}\right)^x \; = \; \displaystyle {a\,^x \over b\,^x} \qquad\qquad \)


Potenser med positiva exponenter

Potensen \( \, a\,^{\color{Red} x} \, \) med positiv exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad multiplikation av \( \, a \, \) med sig själv, \( \, {\color{Red} x} \, \) gånger:
\( \quad a\,^{\color{Red} x} = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{{\color{Red} x}\;{\rm gånger}} \)

Exempel på första potenslagen

Förenkla: \( \quad\;\; a\,^2 \, \cdot \, a\,^3 \)


Lösning:

\( a\,^2 \cdot a\,^3 \; = \; \underbrace{a \cdot a}_{2\;\times} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3\;\times} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{{\color{Red} 5}\;\times} \; = \; a\,^{\color{Red} 5}\)

Snabbare:

\( a\,^2 \cdot a\,^3 \; = \; a\,^{2\,+\,3} = \; a\,^{\color{Red} 5} \)


Den snabbare lösningen ovan är ett exempel på den första potenslagen. Nedan följer ett exempel på den andra potenslagen.


Exempel på andra potenslagen

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; {a \cdot a \cdot a \cdot a \cdot a \; \over \; a \cdot a \cdot a} \; = \; {a \cdot a \cdot \cancel{a \cdot a \cdot a} \; \over \; \cancel{a \cdot a \cdot a}} \; = \; a \cdot a \; = \; a\,^2 \)

Snabbare:

\( \displaystyle {a\,^{\color{Red} 5} \over a\,^{\color{Red} 3}} \; = \; a\,^{{\color{Red} {5\,-\,3}}} \; = \; a\,^2 \)


Potensbegreppet definierades inledningsvis endast för positiva exponenter. Men den definitionen duger inte för negativa exponenter.

Antalet multiplikationer av basen med sig själv kan inte vara negativt. Det behövs en ny definition.


Potenser med negativa exponenter

Exempel på potens med negativ exponent:

\[ \;\; \displaystyle 2\,^{\color{Red} {-3}} \; = \;\; 1\,/\,\underbrace{2 \, / \, 2 \, / \, 2}_{{\color{Red} 3}\;\times} \; = \; 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \; = \; \frac{1}{\underbrace{2 \, \cdot \, 2 \, \cdot \, 2}_{{\color{Red} 3}\;\times}} \; = \; \frac{1}{2\,^{\color{Red} {3}}} \; = \; \frac{1}{8} \quad \]

Potens med negativ exponent = upprepad division av \( \, 1 \, \) med basen \( \, 2 \), \( \, {\color{Red} 3} \, \) gånger.

Eller: \( \qquad\qquad\qquad\qquad\qquad\; \) upprepad multiplikation med basens invers \( \displaystyle \frac{1}{2} \), \( \, {\color{Red} 3} \, \) gånger.

Negativ exponent innebär att invertera potensen med positiv exponent.


Andra exempel: \( \qquad\qquad\qquad \) Att "invertera" t.ex. \( \, 10 \, \) ger \( \, \displaystyle {1 \over 10} \)

\[ \displaystyle{10\,^{-1} \, = \, {1 \over 10\,^1} \, = \, {1 \over 10} \, = \, 0,1} \]
\[ \displaystyle{10\,^{-2} \, = \, {1 \over 10\,^2} \, = \, {1 \over 10 \cdot 10} \, = \, {1 \over 100} \, = \, 0,01} \]
\[ \displaystyle{10\,^{-3} \, = \, {1 \over 10\,^3} \, = \, {1 \over 10 \cdot 10 \cdot 10} \, = \, {1 \over 1000} \, = \, 0,001} \]


Generellt:


Potensen \( \, a\,^{\color{Red} {-x}} \, \) med negativ exponent (\( x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \)) kan definieras som:

Upprepad division av \( \, 1 \, \) med basen \( \, a \, \) (eller multiplikation med \( \, \displaystyle \frac{1}{a} \, \)), \( \, {\color{Red} x} \, \) gånger:
\( \displaystyle a\,^{\color{Red} {-x}} \; = \; 1 \, / \, \underbrace{a \, / \, a \, / \, a \, / \quad \ \cdots \quad / a}_{{\color{Red} x}\;{\rm gånger}} \quad {\color{Red} =} \quad 1 \cdot \underbrace{\frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \quad \cdot \cdots \quad \cdot \frac{1}{a}}_{{\color{Red} x}\;{\rm gånger}} \; = \; {1 \over a^x}\)

Övergången från division till multiplikation (den röda likheten) kan motiveras så här:

Uppfattar man \( \, a \, \) som ett bråk med nämnaren \( \, 1 \, \) dvs \( \, \displaystyle \frac{a}{1} \), kan man ersätta divisionerna med multiplikationer med det inversa \( \, \displaystyle \frac{1}{a} \).

I Bråkräkning hade vi lärt oss att division med ett bråk kan skrivas som en multiplikation med det inversa bråket.


I de följande två påståendena ska gälla: \( \quad x \, \) heltal \( > 0 \, \) och \( \, a \, \neq 0 \quad \).

Påstående:

Lagen om negativ exponent \( \quad a\,^{-x} \; = \; \displaystyle {1 \over a\,^x} \)

Bevis:

\( \displaystyle{1 \over a^x} \; = \; \displaystyle{a^0 \over a^x} \; = \; a^{0-x} \; = \; a^{-x} \)

In den första likheten har vi använt lagen om nollte potens baklänges: \( \; 1 = a^0 \; \).

In den andra likheten har vi använt andra potenslagen: \( \; \displaystyle {a^x \over a^y} \; = \; a\,^{x \, - \, y} \; \).

Efter dessa steg får vi påståendet, fast baklänges.


Påstående:

Lagen om nollte potens \( \quad a^0 \; = \; 1 \; \)

Bevis:

Påståendet kan bevisas genom att använda andra potenslagen:

\( \displaystyle{a^x \over a^x} \; = \; a^{x-x} \; = \; a^0 \)

Å andra sidan vet vi att ett bråk med samma täljare som nämnare har värdet \( \, 1 \):

\( \displaystyle{a^x \over a^x} \; = \; 1 \)

Av raderna ovan följer påståendet:

\( a^0 \; = \; 1 \)


Exemplet nedan illustrerar lagen ovan genom att visa att potenser med negativa exponenter är en naturlig fortsättning på potenser med positiva exponenter och nollte potensen däremellan (Potens \( \; = \; \) upprepad multiplikation):

Varför är \( \; 5\,^0 \, = \, 1 \; \)?

\[ \;\; 5^4 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^3 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \cdot 5 \]
\[ \;\; 5^2 \; = \; {\color{Red} 1} \cdot 5 \cdot 5 \]
\[ \;\; 5^1 \; = \; {\color{Red} 1} \cdot 5 \]
\[ \; \boxed{{\color{Red} {5^0 \; = \; 1}}} \]
\[ \;\; 5^{-1} \; = \; \displaystyle{{\color{Red} 1} \over 5} \]
\[ \;\; 5^{-2} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5} \]
\[ \;\; 5^{-3} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5} \]
\[ \;\; 5^{-4} \; = \; \displaystyle{{\color{Red} 1} \over 5 \cdot 5 \cdot 5 \cdot 5 } \]

Att \( \; {\color{Red} 1} \)-orna följer med hela tiden beror på att multiplikationens enhet är \( \, {\color{Red} 1} \), dvs \( \, a \cdot {\color{Red} 1} \, = \, a \).

Därför blir endast \( \, {\color{Red} 1} \, \) kvar, när vi kommer till \( \, {\color{Red} {5^0}} \, \) då alla \( \, 5\)-or har försvunnit.


Jämför med produkter med negativa faktorer som är en naturlig fortsättning på produkter med positiva faktorer och nollprodukten däremellan (Produkt \( \; = \; \) upprepad addition: \( \, {\color{Red} 0} \, \) tar över rollen av \( \, {\color{Red} 1} \)):

Varför är \( \; 5 \cdot 0 \, = \, 0 \; \)?

\[ \;\; 5 \cdot 4 \; = \; {\color{Red} 0} + 5 + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 3 \; = \; {\color{Red} 0} + 5 + 5 + 5 \]
\[ \;\; 5 \cdot 2 \; = \; {\color{Red} 0} + 5 + 5 \]
\[ \;\; 5 \cdot 1 \; = \; {\color{Red} 0} + 5 \]
\[ \; \boxed{{\color{Red} {5 \cdot 0 \; = \; 0}}} \]
\[ \;\; 5 \cdot (-1) \; = \; {\color{Red} 0} - 5 \]
\[ \;\; 5 \cdot (-2) \; = \; {\color{Red} 0} - 5 - 5 \]
\[ \;\; 5 \cdot (-3) \; = \; {\color{Red} 0} - 5 - 5 - 5 \]
\[ \;\; 5 \cdot (-4) \; = \; {\color{Red} 0} - 5 - 5 - 5 - 5 \]

Att \( \; {\color{Red} 0} \)-orna följer med hela tiden beror på att additionens enhet är \( \, {\color{Red} 0} \), dvs \( \, a + {\color{Red} 0} \, = \, a \).

Därför blir endast \( \, {\color{Red} 0} \, \) kvar, när vi kommer till \( \, {\color{Red} {5 \cdot 0}} \, \) då alla \( \, 5\)-or har försvunnit.


Potenser med rationella exponenter

Potenser med exponenter som är rationella tal (bråktal) är ett annat sätt att skriva rötter.

Därför kan de användas för att beräkna både kvadratrötter och högre rötter.

Följande samband råder mellan potenser med rationella exponenter och rötter:

Lagen om kvadratroten \( \quad a^{1 \over 2} \; = \; \sqrt{a} \)

I följande ska alltid gälla: \( \quad m, n \, \) heltal och \( \, n \, \neq 0 \quad \).

Påstående:

Lagen om högre rötter \( \quad a^{1 \over n} \; = \; \sqrt[n]{a} \)

Bevisidé:

Vi tar specialfallet \( n=3 \), multiplicerar \( a \)\(^{1 \over 3} \) tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:

\( \displaystyle a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \)

Definitionen för 3:e roten ur \( a \) är:

\( \qquad\quad \displaystyle \sqrt[3]{a} \; = \; \) Tal som 3 gånger multiplicerat med sig själv ger \( a \).

Men enligt ovan är det tal som 3 gånger med sig själv ger \( a \), just \( a \) \(^{1 \over 3} \). Alltså måste detta tal vara lika med 3:e roten ur \( a \):

\( \displaystyle a^{1 \over 3} \; = \; \sqrt[3]{a} \)

Denna bevisidé kan vidareutvecklas till det allmänna fallet:

Lagen om rationell exponent \( \quad \displaystyle a^{m \over n} \; = \; \sqrt[n]{a^m} \)

Tabellen över Potenslagarna borde kompletteras med dessa lagar för rationella exponenter.


Potensekvationer

Anta i fortsättningen att \( \, x \, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) .

Funktioner av typ \( y = x^3\, \) kallas potensfunktioner, generellt \( \; y = c \cdot x^b\, \).
Ekvationer av typ \( x^3\, = 8 \) kallas potensekvationer, generellt \( \; x^b\, = c \).

I potensfunktioner och -ekvationer förekommer \( \, x \, \) i basen. Potensekvationer löses genom rotdragning. För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:

\[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]

Alternativt (med rationell exponent):

\[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]

Det alternativa sättet att lösa ekvationen ovan visar att rötter även kan uppfattas och skrivas som potenser med rationella exponenter.



Internetlänkar

http://www.youtube.com/watch?v=iYgG4LUqXks

http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html

http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html

http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar





Copyright © 2010-2016 Math Online Sweden AB. All Rights Reserved.