3.5 Lösning 8c
Från Mathonline
Version från den 3 februari 2015 kl. 21.29 av Taifun (Diskussion | bidrag)
Vi deriverar målfunktionen:
- \[ V(r) \, = \, 30\,\pi\,r^2 \, - 2\,\pi\,r^3 \]
- \[ V'(r) \, = \, 60\,\pi\,r \, - \, 6\,\pi\,r^2 \]
- \[ V''(r) \, = \, 60\,\pi \, - \, 12\,\pi\,r \]
Derivatans nollställe:
- \[\begin{array}{rcrcl} V'(r) & = & 60\,\pi\,r \, - \, 6\,\pi\,r^2 & = & 0 \\ & & 250 & = & 3\,\pi\,r^2 \\ & & {250 \over 3\,\pi} & = & r^2 \\ & & r_{1, 2} & = & \pm\,\sqrt{250 \over 3\,\pi} \\ & & r & = & 5,15 \end{array}\]
\( \, r_2 = -5,15 \, \) förkastas, för radien kan inte bli negativ: \( \, r \, > \, 0 \, \) .
Andraderivatans tecken för \( \, r = 5,15 \, \):
\( V''(5,15) = -6 \,\pi\cdot 5,15 \, < \, 0 \quad \Longrightarrow \quad V(r) \, \) har ett lokalt maximum för \( \, r = 5,15 \, \).
För att få cylinderns höjd när volymen maximeras sätter vi in \( \, r = 5,15 \, \) i bivillkoret från a):
\( h \, = \, \displaystyle {250 \over \pi\,r} \, - \, r \, = \, {250 \over \pi\cdot 5,15} \, - \, 5,15 \, = \, 10,30 \)
Cylinderns volym blir maximal för radien \( \; r = 5,15 \, {\rm cm} \; \) och höjden \( \; h = 10,30 \, {\rm cm} \; \).