1.1 Lösning 3b
\(\begin{align} {x + \sqrt{x} \over 7} & = 6 & & | \;\;\;\, \cdot 7 \\ x + \sqrt{x} & = 42 & & | \;\, - x \\ \sqrt{x} & = 42 - x & & | \; (\;\;\;)^2 \\ x & = (42 - x)^2 \\ x & = 1764 - 84\,x + x^2 & & | -x \\ x^2 - 85\,x + 1764 & = 0 \\ x_{1,2} & = 42,5 \pm \sqrt{1806,25 - 1764} \\ x_{1,2} & = 42,5 \pm \sqrt{42,25} \\ x_{1,2} & = 42,5 \pm 6,5 \\ x_1 & = 49 \\ x_2 & = 36 \\ \end{align}\)
Prövning:
VL\[ 2\,\sqrt{1} - 1 = 2 - 1 = 1 \]
HL\[ \displaystyle 1 \]
VL = HL \( \Rightarrow\, x = 1 \) är rotekvationens lösning.