Potenser
Teori | Övningar |
Innehåll
Potensbegreppet
Ett uttryck av formen \( a^x\, \) läses "a upphöjt till x" och kallas potens. \( a\, \) heter basen och \( x\, \) exponenten.
Om \( x\, \) är ett positivt heltal och \( a\, \) ett tal \( \neq 0 \) kan potensen \( a^x\, \) definieras som en förkortning för upprepad multiplikation av \( a\, \) med sig själv \( x\, \) gånger:
- \[ a^x = \underbrace{a \cdot a \cdot a \cdot \quad \ \cdots \quad \cdot a}_{x\;\,\text{styck}} \]
Exempel:
- \[ a^2 = a \cdot a \]
- \[ a^3 = a \cdot a \cdot a \]
Om vi nu multiplicerar dessa två potenser med varandra och använder potensens definition, får vi:
- \[ a^2 \cdot a^3 \; = \; \underbrace{a \cdot a}_{2} \; \cdot \; \underbrace{a \cdot a \cdot a}_{3} \; = \; \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{5} \; = \; a^5\]
Vi kan sammanfatta till:
- \[ a^2 \cdot a^3 \; = \; a^{2+3} = \; a^5\]
Detta är ett exempel på en allmän lag, den första potenslagen:
- \[ a^x \cdot a^y \; = \; a^{x+y} \]
Det finns flera sådana:
Potenslagarna
Följande lagar gäller för potenser där basen \( a\, \) är ett tal \( \neq 0 \), exponenterna \( x\, \) och \( y\, \) vilka rationella tal som helst och \( m,\,n \) heltal (\( n\neq 0 \)), med exempel till höger:
Fil:Potenslagarna 70a.jpg Fil:Potens Ex 60.jpg
Bevis av några potenslagar
Påstående (Produkt av potenser med samma bas):
- \[ a^x \cdot a^y \; = \; a^{x+y} \]
Bevis:
Påståendet kan bevisas genom att använda potensens definition:
- \[ a^x \cdot a^y \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x} \; \cdot \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{y} \; = \; \underbrace{a \cdot a \cdot \; \ \cdots \; \cdot a}_{x+y} \; = \; a^{x+y} \]
Påstående (Nollte potens):
- \[ a^0 \; = \; 1 \]
Bevis:
Påståendet kan bevisas genom att använda potenslagen för division av potenser med samma bas:
- \[ a^0 \; = \; a^{x-x} \; = \; {a^x \over a^x} \; = \; 1 \]
Påstående (Negativ exponent):
- \[ a^{-x} = {1 \over a^x} \]
Exempel:
För negativa heltalexponenter kan potensen \( a^{-x}\, \) definieras som en förkortning för \(1 /\,\) upprepad division av \( a\, \) med sig själv \( x\, \) gånger:
- \[ a^{-x} = 1 / \underbrace{a / a / a / \quad \ \cdots \quad / a}_{x\;\,\text{styck}} \]
Uppfattar man a som ett bråk med nämnaren 1 dvs \( {a \over 1} \) och ersätter i uttrycket ovan divisionerna med a med multiplikationer med det omvända (inversa) bråket \( {1 \over a} \), kan man skriva om uttrycket ovan så här:
- \[ a^{-x} = 1 \cdot \underbrace{{1 \over a} \cdot {1 \over a} \cdot {1 \over a} \cdot \quad \cdot \cdots \quad \cdot {1 \over a}}_{x\;\,\text{styck}} = {1 \over a^x} \]
Vi får följande formel för potenser med negativa heltalexponenter:
- \[ a^{-x} = {1 \over a^x} \]
Exempel på negativa heltalsexponenter:
- \[ a^{-2} = {1 \over a^2} = {1 \over a \cdot a} \]
- \[ a^{-3} = {1 \over a^3} = {1 \over a \cdot a \cdot a} \]
Påstående (Rationell exponent):
- \[ a^{m \over n} \; = \; \sqrt[n]{a^m} \]
Bevisidé:
Vi tar specialfallet \( m=1 \) och \( n=3 \), multiplicerar \( a^{1 \over 3} \) tre gånger med sig själv och använder potenslagen om produkt av potenser med samma bas:
- \[ a^{1 \over 3} \cdot a^{1 \over 3} \cdot a^{1 \over 3} \; = \; a^{{1 \over 3} + {1 \over 3} + {1 \over 3}} \; = \; a^{3 \over 3} \; = \; a^1 \; = \; a \]
Definitionen för 3:e roten ur a är\[\sqrt[3]{a} = \] Tal som 3 gånger med sig själv ger a. Men enligt raden ovan är det tal som 3 gånger med sig själv ger a, just \( a^{1 \over 3} \). Alltså måste detta tal vara lika med 3:e roten ur a:
- \[ a^{1 \over 3} \; = \; \sqrt[3]{a} \]
Denna bevisidé kan vidareutvecklas till det allmänna fallet för alla heltal \( m\, \) och \( n\neq 0 \).
Exponential- och potensekvationer
Själva aktionen \( a^x\, \) dvs att ta \( a\, \) upphöjt till \( x\, \) kallas exponentiering och är en ny räkneoperation jämfört med de fyra räknesätten. När x är lika med 2 pratar man om kvadrering.
Anta i fortsättningen att \( x\, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) . Då kallas
- funktioner av typ \( y = 10^x\, \) exponentialfunktioner, generellt\[ y = c \cdot a^x\, \].
- ekvationer av typ \( 10^x\,= 125 \) exponentialekvationer, generellt\[ a^x\, = b \].
- funktioner av typ \( y = x^3\, \) potensfunktioner, generellt\[ y = c \cdot x^b\, \].
- ekvationer av typ \( x^3\, = 8 \) potensekvationer, generellt\[ x^b\, = c \].
I exponentialfunktioner och -ekvationer förekommer x i exponenten. I potensfunktioner och -ekvationer förekommer x i basen. Medan exponentialekvationer löses genom logaritmering (se avsnitt 1.6 Logaritmer), löses potensekvationer genom rotdragning. För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:
- \[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]
Alternativt (med bråktal som exponent):
- \[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]
Det alternativa sättet att lösa ekvationen \( x^3 = 8\, \) visar att rotdragning kan även uppfattas och skrivas som exponentiering med bråktalsexponenter. För att förstå detta måste man känna till potenslagarna som behandlas nedan. Dessa gäller även för exponenter som är negativa eller bråktal, även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter.
Blandade exempel
Internetlänkar
http://www.youtube.com/watch?v=iYgG4LUqXks
http://www.webbmatte.se/gym/arabiska/2/2_8_4sv.html
http://www.webbmatte.se/gym/arabiska/2/2_8_3sv.html
http://wiki.math.se/wikis/forberedandematte1/index.php/1.3_%C3%96vningar
Copyright © 2010-2012 Taifun Alishenas. All Rights Reserved.