1.4 Lösning 10b
Från Mathonline
Version från den 21 september 2012 kl. 11.09 av Taifun (Diskussion | bidrag)
I övning 10a) kunde vi skriva funktionen \( f(x)\,\) med faktoriserad nämnare så här\[ f(x) = {x+2 \over (x+2) \cdot (x-3)} \]
Detta visar att \( f(x)\,\) inte är definierad för \( x_1 = -2\, \) och för \( x_2 = 3\, \), för nämnaren blir 0 för dessa två x-värden.
Av dessa två diskontinuiteter är \( x_1 = -2\, \) hävbar, därför att faktorn \( x + 2\, \) kan förkortas i det rationella uttryck som definierar \( f(x)\, \).
Diskontinuiteten \( x_2 = 3\, \) däremot är icke-hävbar, därför att faktorn \( x - 3\, \) inte kan förkortas.