1.3 Lösning 5b
Från Mathonline
Version från den 5 januari 2011 kl. 18.01 av Taifun (Diskussion | bidrag)
Från grafen läser man av nollställena 2 och 5. Två nollställen innebär att kurvan visar en polynomfunktion av grad 2. För alla sådana funktioner kan vi skriva följande ansats i faktorform:
- \[ y = k \cdot (x-2) \cdot (x-5) \]
där k är någon konstant. Nollställena innebär att y = 0 för alla x = 2 eller x = 5 oavsett k, se uppgift 5a.
För att bestämma k måste vi använda oss av ytterligare en information av den givna kurvan. Man kan t.ex. avläsa att kurvan skär y-axeln i y = 10, dvs kurvan går genom punkten (0, 10), dvs punkten med x-koordinaten 0 och y-koordinaten 10. Sätter vi in dessa värden, 0 för x och 10 för y, i ansatsen ovan får vi en ekvation för k:
- \[ \begin{align} 10 & = k \cdot (0-2) \cdot (0-5) \\ 10 & = k \cdot (-2) \cdot (-5) \\ 10 & = k \cdot 10 \\ k & = 1 \\ \end{align}\]
Därför kan vi ange det polynom vars graf är kurvan i grafen, som:
- \[ (x-2) \cdot (x-5) \]