Skillnad mellan versioner av "1.5 Övningar till Kontinuerliga och diskreta funktioner"

Från Mathonline
Hoppa till: navigering, sök
m (Övning 5)
m
Rad 91: Rad 91:
  
 
c) Rita Fibonaccis diskreta funktion för de första 24 fibonaccitalen. Använd grafen för de 12 första fibonaccitalen som visades i Exempel 3 genom att komplettera den.
 
c) Rita Fibonaccis diskreta funktion för de första 24 fibonaccitalen. Använd grafen för de 12 första fibonaccitalen som visades i Exempel 3 genom att komplettera den.
 +
 +
</div>{{#NAVCONTENT:Svar 5a|1.5a Svar 5a|Svar 5b|1.5a Svar 5b|Svar 5c|1.5a Svar 5c}}
 +
 +
== Övning 6 ==

Versionen från 11 juli 2014 kl. 13.43

       <-- Förra avsnitt          Teori          Övningar          Fördjupning          Nästa avsnitt -->      


E-övningar: 1-5


Övning 1

Bestäm för varje graf om den visar en diskret eller en kontinuerlig funktion.

Ange även om och i så fall för vilka \( x \, \) funktionerna har diskontinuiteter.

Motivera dina svar.

Övn 1.jpg

Övning 2

a) Rita grafen till den diskreta funktionen

\[ y = x^2\, \]

vars definitionsmängd är alla heltal \( x\, \) mellan \( -5\, \) och \( 5\, \) dvs \( -5 \leq x \leq 5 \).

Undersök om din grafräknare kan rita diskreta funktioner. Om ja gör det, annars rita manuellt på rutat papper.

b) Rita med grafräknaren grafen till den kontinuerliga funktionen

\[ y = x^2\, \]

vars definitionsmängd är alla reella tal \( x\, \) mellan \( -5\, \) och \( 5\, \) dvs \( -5 \leq x \leq 5 \).

Fundera själv vilka min- och max-värden du borde ange för räknarens display (WINDOW-knappen).

Övning 3

Anta att varje ruta i grafen nedan har längdenheten \( 1\, \).

Övn 3 60a.jpg

a) Är funktionen \( f(x)\, \) diskret eller kontinuerlig?

b) Vilket värde kan du läsa av från grafen för funktionen \( f(x)\, \) för \( x = 4\, \)?

c) För vilka \( x\, \) är funktionen \( f(x)\, \) inte definierad i det ritade intervallet?

d) För vilka \( x\, \) är funktionen \( f(x)\, \) inte kontinuerlig i det ritade intervallet?

Motivera dina svar.

Övning 4

Anta att varje ruta i grafen nedan har längdenheten \( 1\, \).

Övn 4 60.jpg

a) Vilket värde kan du läsa av från grafen för funktionen \( f(x)\, \) för \( x = 4\, \)?

b) Är funktionen \( f(x)\, \) definierad för alla \( x\, \) i det ritade intervallet?

c) Är funktionen \( f(x)\, \) kontinuerlig för alla \( x\, \) i det ritade intervallet?

d) För vilka \( x\, \) är funktionen \( f(x)\, \) kontinuerlig och för vilka är den diskontinuerlig?.

Motivera dina svar.

Övning 5

I teoridelen, Exempel 3, beräknades de 12 första fibonaccitalen med hjälp av formeln för Fibonaccis_funktion.

a) Komplettera med hjälp av samma formel denna beräkning med ytterligare 12 fibonaccital som följer efter de 12 första fibonaccitalen, för att sedan kunna besvara följande fråga:

b) Hur många kaninpar kommer att finnas efter två år?

c) Rita Fibonaccis diskreta funktion för de första 24 fibonaccitalen. Använd grafen för de 12 första fibonaccitalen som visades i Exempel 3 genom att komplettera den.

Övning 6