Skillnad mellan versioner av "1.5 Kontinuerliga och diskreta funktioner"

Från Mathonline
Hoppa till: navigering, sök
m (Exempel 1 Prisfunktion för ägg)
m (Exempel 1 Prisfunktion för ägg)
Rad 24: Rad 24:
 
'''Lösning:'''
 
'''Lösning:'''
  
a) <math> {\color{White} x} {\color{Red} 1} \, </math> ägg kostar <math> {\color{Red} 1} \cdot 3 \;{\rm kr} </math>
+
a) <math> {\color{White} x} {\color{Red} 1} \, </math> ägg kostar <math> {\color{Red} 1} \cdot 3 \;{\rm kr,} </math>
  
:<math> {\color{Red} 2} \, </math> ägg kostar <math> {\color{Red} 2} \cdot 3 \;{\rm kr} </math>
+
:<math> {\color{Red} 2} \, </math> ägg kostar <math> {\color{Red} 2} \cdot 3 \;{\rm kr,} </math>
  
:<math> {\color{Red} 3} \, </math> ägg kostar <math> {\color{Red} 3} \cdot 3 \;{\rm kr} </math>
+
:<math> {\color{Red} 3} \, </math> ägg kostar <math> {\color{Red} 3} \cdot 3 \;{\rm kr,} </math>
  
 
:<math> {\color{White} x} \qquad \cdots </math>
 
:<math> {\color{White} x} \qquad \cdots </math>
  
:<math> {\color{Red} x} \, </math> ägg kostar <math> {\color{Red} x} \cdot 3 \;{\rm kr} </math> eller <math> 3\;{\color{Red} x} \;{\rm kr} </math>
+
:<math> {\color{Red} x} \, </math> ägg kostar <math> {\color{Red} x} \cdot 3 \;{\rm kr} </math> eller <math> 3\;{\color{Red} x} \;{\rm kr.} </math>
  
 
Därför är prisfunktionen:
 
Därför är prisfunktionen:

Versionen från 8 juli 2014 kl. 11.17

       Teori          Övningar          Repetitionsuppgifter till 1.1 - 1.4          Internetlänkar      


Lektion 8 Kontinuerliga & diskreta funktioner

Exempel 1 Prisfunktion för ägg

En torghandlare säljer ägg för 3 kr per styck.

a) Ställ upp en funktion som beskriver priset \( y \, \) kr för \( x \, \) st ägg.

b) Rita grafen till funktionen i a).

Lösning:

a) \( {\color{White} x} {\color{Red} 1} \, \) ägg kostar \( {\color{Red} 1} \cdot 3 \;{\rm kr,} \)

\[ {\color{Red} 2} \, \] ägg kostar \( {\color{Red} 2} \cdot 3 \;{\rm kr,} \)

\[ {\color{Red} 3} \, \] ägg kostar \( {\color{Red} 3} \cdot 3 \;{\rm kr,} \)

\[ {\color{White} x} \qquad \cdots \]

\[ {\color{Red} x} \, \] ägg kostar \( {\color{Red} x} \cdot 3 \;{\rm kr} \) eller \( 3\;{\color{Red} x} \;{\rm kr.} \)

Därför är prisfunktionen:

\[ y = 3\;{\color{Red} x} \]

b)