Skillnad mellan versioner av "1.5 Lösning 6a"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 1: Rad 1:
Vi inför obekanten <math> x\, </math> = Förändringsfaktorn för ett år.
+
Vi inför obekanten <math> x\, </math> som förändringsfaktorn för ett år.  
  
 
Efter 1 år finns det på kontot: <math> 5\,000 \cdot x </math>
 
Efter 1 år finns det på kontot: <math> 5\,000 \cdot x </math>

Versionen från 21 september 2012 kl. 15.02

Vi inför obekanten \( x\, \) som förändringsfaktorn för ett år.

Efter 1 år finns det på kontot\[ 5\,000 \cdot x \]

Efter 2 år finns det på kontot\[ (5\,000 \cdot x) \cdot x = 5\,000 \cdot x^2 \]

\( \cdots \)

Efter 10 år finns det på kontot\[ 5\,000 \cdot x \cdot x \cdot\,\cdots\,\cdot x = 5\,000 \cdot x^{10} \]

Fördubbling ger följande potensekvation som löses med rotdragning\[\begin{align} 5\,000 \cdot x^{10} & = 10\,000 \\ x^{10} & = 2 \qquad & | \; \sqrt[10]{\;\;} \\ \sqrt[10]{x^{10}} & = \sqrt[10]{2} \\ x & = \sqrt[10]{2} \\ \end{align}\]

För att kunna beräkna \( \sqrt[10]{2} \) går vi över från rotnotation till potens med bråktal som exponent:

\[\begin{align} x & = \sqrt[10]{2} \quad & | \; (\;\;\;)^{1 \over 10} \; \text{samma som} \; \sqrt[10]{\;\;} \\ x & = 2^{1 \over 10} \\ \end{align}\]

I räknaren beräknas \( 2^{1 \over 10} \) genom att mata in: 2 ^ (1/10)