Skillnad mellan versioner av "1.1 Lösning 11"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 1: Rad 1:
 
Först förenklar vi ekvationen genom att ordna termerna och bli av med bråken:
 
Först förenklar vi ekvationen genom att ordna termerna och bli av med bråken:
  
:<math>\begin{align} {1\over2}\,(x^2 + 4\,x + 1)^2                    & = {3\over2} - (x^2 + 4\,x + 1) & & \qquad | + (x^2 + 4\,x + 1) \\
+
::<math>\begin{align} {1\over2}\,(x^2 + 4\,x + 1)^2                    & = {3\over2} - (x^2 + 4\,x + 1) & & \qquad | + (x^2 + 4\,x + 1) \\
 
                     {1\over2}\,(x^2 + 4\,x + 1)^2 + (x^2 + 4\,x + 1) & = {3\over2}                    & & \qquad | \cdot 2            \\
 
                     {1\over2}\,(x^2 + 4\,x + 1)^2 + (x^2 + 4\,x + 1) & = {3\over2}                    & & \qquad | \cdot 2            \\
 
                     (x^2 + 4\,x + 1)^2 + 2\,(x^2 + 4\,x + 1)        & = 3                            & & \qquad | - 3                \\
 
                     (x^2 + 4\,x + 1)^2 + 2\,(x^2 + 4\,x + 1)        & = 3                            & & \qquad | - 3                \\
Rad 13: Rad 13:
 
Ersätter man i 4:e gradsekvationen <math> (x^2 + 4\,x + 1)^2 + 2\,(x^2 + 4\,x + 1) + 3 = 0 </math> enligt substitutionen ovan <math> x^2 + 4\,x + 1 </math> med <math> \displaystyle t </math> får man den 2:e gradsekvation <math> t^2 + 2\,t - 3 = 0 </math> som kan lösas med pq-formeln:
 
Ersätter man i 4:e gradsekvationen <math> (x^2 + 4\,x + 1)^2 + 2\,(x^2 + 4\,x + 1) + 3 = 0 </math> enligt substitutionen ovan <math> x^2 + 4\,x + 1 </math> med <math> \displaystyle t </math> får man den 2:e gradsekvation <math> t^2 + 2\,t - 3 = 0 </math> som kan lösas med pq-formeln:
  
:::<math>\begin{align} t^2 + 2\,t - 3 & = 0                  & &                          \\
+
:::::<math>\begin{align} t^2 + 2\,t - 3 & = 0                  & &                          \\
 
                     x^2 + 1        & = 9\,x^2 - 18\,x + 9 & & \qquad | \;\; - x^2      \\
 
                     x^2 + 1        & = 9\,x^2 - 18\,x + 9 & & \qquad | \;\; - x^2      \\
 
                           1        & = 8\,x^2 - 18\,x + 9 & & \qquad | \;\; - 1        \\
 
                           1        & = 8\,x^2 - 18\,x + 9 & & \qquad | \;\; - 1        \\

Versionen från 21 november 2010 kl. 16.47

Först förenklar vi ekvationen genom att ordna termerna och bli av med bråken:

\[\begin{align} {1\over2}\,(x^2 + 4\,x + 1)^2 & = {3\over2} - (x^2 + 4\,x + 1) & & \qquad | + (x^2 + 4\,x + 1) \\ {1\over2}\,(x^2 + 4\,x + 1)^2 + (x^2 + 4\,x + 1) & = {3\over2} & & \qquad | \cdot 2 \\ (x^2 + 4\,x + 1)^2 + 2\,(x^2 + 4\,x + 1) & = 3 & & \qquad | - 3 \\ (x^2 + 4\,x + 1)^2 + 2\,(x^2 + 4\,x + 1) + 3 & = 0 \\ \end{align}\]

Nu kan man se att samma uttryck (x^2 + 4\,x + 1) som involverar obekanten x förekommer två gånger i ekvationen. Ersätter man det med en ny variabel kan ekvationen förenklas väsentligt. Gör man det på rätt sätt går 4:e gradsekvationen över till en 2:e gradsekvation:

Substitutionen \( t = x^2 + 4\,x + 1 \) åstadkommer detta.

Ersätter man i 4:e gradsekvationen \( (x^2 + 4\,x + 1)^2 + 2\,(x^2 + 4\,x + 1) + 3 = 0 \) enligt substitutionen ovan \( x^2 + 4\,x + 1 \) med \( \displaystyle t \) får man den 2:e gradsekvation \( t^2 + 2\,t - 3 = 0 \) som kan lösas med pq-formeln:

\[\begin{align} t^2 + 2\,t - 3 & = 0 & & \\ x^2 + 1 & = 9\,x^2 - 18\,x + 9 & & \qquad | \;\; - x^2 \\ 1 & = 8\,x^2 - 18\,x + 9 & & \qquad | \;\; - 1 \\ 0 & = 8\,x^2 - 18\,x + 8 & & \qquad | \;\; / 8 \\ 0 & = x^2 - 2,25\,x + 1 \\ x_{1,2} & = 1,125 \pm \sqrt{1,266 - 1} \\ x_{1,2} & = 1,125 \pm 0,515 \\ x_1 & = 1,64 \\ x_2 & = 0,61 \\ \end{align}\]

Sätter vi tillbaka \( t = 1 \) i substitutionen ovan\[ 1 = \sqrt{x} \] och kvadrerar får vi lösningen \( x = 1 \).

Prövning av \( x_1 = 1,64 \):

VL\[ \sqrt{1,64^2 + 1} = 1,92 \]

HL\[ 3\cdot1,64 - 3 = 1,92 \]

VL = HL \( \Rightarrow\, x = 1,64 \) är en sann rot. I denna uppgift räcker det att visa en sann rot.

Den andra lösningen \( x_1 = 0,61 \) är en falsk rot vilket återstår att visa.