Skillnad mellan versioner av "2.2 Lösning 2b"

Från Mathonline
Hoppa till: navigering, sök
m (Created page with "<math> y = -3\,x^2 + 2\,x - 12 </math> i intervallet <math> -2 \leq x \,\leq\, 2 </math>")
 
m
Rad 1: Rad 1:
 +
<math> f(2) = -3\cdot 2^2 + 2\cdot 2 - 12 = -3\cdot 4 + 4 - 12 = -12 + 4 - 12 </math>
 +
 +
<math> f(-2) = - [-3\cdot (-2)^2 + 2\cdot (-2) - 12] = </math>
 +
 +
<math> \Delta y = </math>
 +
 +
<math> =  - [-3\cdot 4 - 4 - 12] = </math>
 +
 +
<math> {\Delta y \over \Delta x} = {f(3) \, - \, f(2) \over 2 - (-2)} = {5\cdot 3 + 23 \, - \, (5\cdot 2 + 23) \over 1} = </math>
 +
 +
 +
<math> = 15+23 \, - \, (10+23)  = 38-33 = 5 </math>
 +
 
<math> y = -3\,x^2 + 2\,x - 12 </math> i intervallet <math> -2 \leq x \,\leq\, 2 </math>
 
<math> y = -3\,x^2 + 2\,x - 12 </math> i intervallet <math> -2 \leq x \,\leq\, 2 </math>

Versionen från 1 maj 2011 kl. 15.40

\( f(2) = -3\cdot 2^2 + 2\cdot 2 - 12 = -3\cdot 4 + 4 - 12 = -12 + 4 - 12 \)

\( f(-2) = - [-3\cdot (-2)^2 + 2\cdot (-2) - 12] = \)

\( \Delta y = \)

\( = - [-3\cdot 4 - 4 - 12] = \)

\( {\Delta y \over \Delta x} = {f(3) \, - \, f(2) \over 2 - (-2)} = {5\cdot 3 + 23 \, - \, (5\cdot 2 + 23) \over 1} = \)


\( = 15+23 \, - \, (10+23) = 38-33 = 5 \)

\( y = -3\,x^2 + 2\,x - 12 \) i intervallet \( -2 \leq x \,\leq\, 2 \)