Skillnad mellan versioner av "1.5 Bråkräkning"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
Rad 105: Rad 105:
 
Förkorta alltid ett bråk när det är möjligt för att få
 
Förkorta alltid ett bråk när det är möjligt för att få
  
mindre tal och minska risken för felräknning.  
+
mindre tal och därmed minska risken för felräknning.  
 
</div>
 
</div>
 
</big>
 
</big>

Nuvarande version från 13 september 2019 kl. 10.10

        <<  Förra demoavsnitt          Genomgång          Övningar          Nästa demoavsnitt  >>      


Tal i bråkform


Bild Tal i brakform 30.jpg

Bråkstrecket betyder division:

34=3/4=0,75

Generellt:

Alla tal i bråkform kan skrivas i decimalform, men inte tvärtom.

T.ex. 2=1,4142135623730950488 kan inte anges i bråkform eftersom det har en oändlig icke-periodisk decimalutveckling.

Alla tal som kan skrivas i bråkform kallas för rationella. De som inte kan skrivas i bråkform kallas för irrationella, se Olika typer av tal.


Blandad form


Skriv bråket 72 till blandad form:

72=7/2=3,rest1=312

Eller använd miniräknare:

72=7/2=3,5=312

OBS!

I blandade former står mellan heltalet och

bråket ett osynligt + :  312=3 + 12

Läs därför:                       "Tre och en halv"


Omvänt:

Skriv blandade formen till bråk:

312=32+12=72

Därför att:

312=3+12=31+12=

=3212+12=62+12=72


Regeln för att skriva en blandad form till bråk:

abc=ac+bc


Förkortning av bråk


Förkorta bråken så långt som möjligt:

1) \quad \displaystyle \frac{2}{4} \; = \; \frac{1 \cdot 2}{2 \cdot 2} \; = \; \frac{1 \cdot \cancel{\color{Red} 2}}{2 \cdot \cancel{\color{Red} 2}} \; = \; \frac{1}{2}

2) \quad \displaystyle \frac{6}{9} \; = \; \frac{2 \cdot 3}{3 \cdot 3} \; = \; \frac{2 \cdot \cancel{\color{Red} 3}}{3 \cdot \cancel{\color{Red} 3}} \; = \; \frac{2}{3}

3) \quad \displaystyle \frac{10}{15} \; = \; \frac{2 \cdot 5}{3 \cdot 5} \; = \; \; \frac{2 \cdot \cancel{\color{Red} 5}}{3 \cdot \cancel{\color{Red} 5}} \; = \; \frac{2}{3}

4) \quad \displaystyle \frac{8}{24} \; = \; \frac{\cancel{\color{Red} 2} \cdot 4}{\cancel{\color{Red} 2} \cdot 12} \, = \, \frac{\cancel{\color{Red} 2} \cdot 2}{\cancel{\color{Red} 2} \cdot 6} \, = \, \frac{\cancel{\color{Red} 2} \cdot 1}{\cancel{\color{Red} 2} \cdot 3} \, = \, \frac{1}{3}

Metoden:

Hitta en gemensam faktor hos täljaren och nämna-

ren. Dividera både täljaren och nämnaren med

samma gemensamma faktor.


Rekommendation:

Förkorta alltid ett bråk när det är möjligt för att få

mindre tal och därmed minska risken för felräknning.


Förlängning av bråk


Förläng bråken:

1) \quad \displaystyle \frac{3}{4} \; = \; \frac{3 \cdot {\color{Red} 3}}{4 \cdot {\color{Red} 3}} \; = \; \frac{9}{12}

2) \quad \displaystyle \frac{2}{3} \; = \; \frac{2 \cdot {\color{Red} 4}}{3 \cdot {\color{Red} 4}} \; = \; \frac{8}{12}

3) \quad \displaystyle \frac{3}{4} \; = \; \frac{3 \cdot {\color{Red} 5}}{4 \cdot {\color{Red} 5}} \; = \; \frac{15}{20} \; = \; \frac{15 \cdot {\color{Red} 5}}{20 \cdot {\color{Red} 5}} \; = \; \frac{75}{100}

4) \quad \displaystyle {1 \over 8} \; = \; {1 \cdot {\color{Red} 5} \over 8 \cdot {\color{Red} 5}} \; = \; {5 \over 40} \; = \; {5 \cdot {\color{Red} 5} \over 40 \cdot {\color{Red} 5}} \; = \; {25 \over 200} \; =

\qquad\quad\; \displaystyle = \; {25 \cdot {\color{Red} 5} \over 200 \cdot {\color{Red} 5}} \; = \; {125 \over 1\,000}

Metoden:

Multiplicera täljaren och nämnaren med samma tal.


Slutsats:

Både förkortning och förlängning bibehåller

bråkets värde.


När ska man förlänga bråk?

1)    Jämförelse av bråk:

Ex.: Vilket av bråken är större: \quad \displaystyle \frac{3}{4} \quad eller \quad \displaystyle \frac{2}{3} \quad  ?

Det kan man bara avgöra genom att förlänga dem till sam-

ma nämnare, se Förlängnng av bråk, ex. 1 och 2:

\qquad\;\; \displaystyle \frac{9}{12} \, > \, \frac{8}{12} \qquad \implies \qquad\displaystyle \frac{3}{4} \, > \, \frac{2}{3}

2)    Addition av bråk med olika nämnare:

Se nedan:   Fall 2 Bråk med olika nämnare.


Addition och subtraktion av bråk


Fall 1   Bråk med samma nämnare

\quad \displaystyle \frac{1}{\color{Red} 5} \; + \; \frac{3}{\color{Red} 5} \; = \; \frac{4}{\color{Red} 5}

\quad \displaystyle \frac{11}{\color{Red} {12}} \; - \; \frac{5}{\color{Red} {12}} \; = \; \frac{6}{\color{Red} {12}} \; = \; \frac{1 \cdot \cancel{6}}{2 \cdot \cancel{6}} \; = \; \frac{1}{2}

\quad \displaystyle \frac{5}{\color{Red} {11}} + \frac{13}{\color{Red} {11}} - \frac{9}{\color{Red} {11}} = \frac{5+13-9}{\color{Red} {11}} = \frac{9}{\color{Red} {11}} \quad


Regeln för add./subtr. av bråk med samma nämnare:

Bibehåll och ta över den gemensamma

nämnaren. Addera/subtrahera täljarna.


Fall 2   Bråk med olika nämnare

\quad \displaystyle \frac{1}{2} \; + \; \frac{1}{3} \; = \; \frac{1 \cdot {\color{Limegreen} 3}}{2 \cdot {\color{Limegreen} 3}} \; + \; \frac{1 \cdot {\color{Limegreen} 2}}{3 \cdot {\color{Limegreen} 2}} \; = \;

\qquad\qquad\;\; \displaystyle \; = \; \frac{3}{\color{Red} 6} \; + \; \frac{2}{\color{Red} 6} \; = \; \frac{5}{\color{Red} 6}

\quad \displaystyle \frac{2}{3} \; + \; \frac{1}{5} \; = \; \frac{2 \cdot {\color{Limegreen} 5}}{3 \cdot {\color{Limegreen} 5}} \; + \; \frac{1 \cdot {\color{Limegreen} 3}}{5 \cdot {\color{Limegreen} 3}} \; = \;

\qquad\qquad\;\; \displaystyle \; = \; \frac{10}{\color{Red} {15}} \; + \; \frac{3}{\color{Red} {15}} \; = \; \frac{13}{\color{Red} {15}}

\quad \displaystyle \frac{7}{4} \; - \; \frac{5}{3} \; = \; \frac{7 \cdot {\color{Limegreen} 3}}{4 \cdot {\color{Limegreen} 3}} \; - \; \frac{5 \cdot {\color{Limegreen} 4}}{3 \cdot {\color{Limegreen} 4}} \; = \;

\qquad\qquad\;\; \displaystyle \; = \; \frac{21}{\color{Red} {12}} \; - \; \frac{20}{\color{Red} {12}} \; = \; \frac{1}{\color{Red} {12}} \quad


Regeln för add./subtr. av bråk med olika nämnare:

Förläng bråken så att de får en gemen-

sam nämnare (oftast nämnarnas produkt).

Använd regeln för add./subtr. av bråk

med samma nämnare.


Multiplikation av bråk


\quad \displaystyle \frac{1}{2} \; \cdot \; \frac{3}{4} \; = \; \frac{1 \cdot 3}{2 \cdot 4} \; = \; \frac{3}{8}

\quad \displaystyle \frac{2}{3} \; \cdot \; \frac{4}{7} \; = \; \frac{2 \cdot 4}{3 \cdot 7} \; = \; \frac{8}{21}

\quad \displaystyle \frac{3}{4} \; \cdot \; \frac{2}{3} \; = \; \frac{3 \cdot 2}{4 \cdot 3} \; = \; \frac{6}{12} \; = \; \frac{1 \cdot \cancel{6}}{2 \cdot \cancel{6}} \; = \; \frac{1}{2}


Regeln för multiplikation av bråk:

Multiplicera:   täljarna   med   varandra,
  nämnarna   med   varandra.


Allmän regel för redovisning av bråkuppgifter:

Förkorta dina svar så långt som möjligt.


Division av bråk


\quad \displaystyle \frac{1}{2} \; \Big/ \; \frac{3}{4} \; = \; \frac{1}{2} \; {\color{Red} {\cdot \; \frac{4}{3}}} \; = \; \frac{1 \cdot 4}{2 \cdot 3} \; = \; \frac{4}{6} \; = \;

\qquad\qquad\; \displaystyle \; = \; \frac{\cancel{2} \cdot 2}{\cancel{2} \cdot 3} \; = \; \frac{2}{3}

\quad \displaystyle \frac{2}{3} \; \Big/ \; \frac{5}{7} \; = \; \frac{2}{3} \; {\color{Red} {\cdot \; \frac{7}{5}}} \; = \; \frac{2 \cdot 7}{3 \cdot 5} \; = \; \frac{14}{15}

\quad \displaystyle \frac{4}{7} \; \Big/ \; \frac{3}{5} \; = \; \frac{4}{7} \; {\color{Red} {\cdot \; \frac{5}{3}}} \; = \; \frac{4 \cdot 5}{7 \cdot 3} \; = \; \frac{20}{21}


Regeln för division av bråk:

Ersätt / med {\color{Red} {\cdot}} och invertera det bråk som

man skulle dividera med (dvs det andra).

Använd regeln för multiplikation av bråk.


Att invertera t.ex. \, \displaystyle \frac{3}{4} \, ger \, \displaystyle {\color{Red} {\frac{4}{3}}} \; .


Dubbelbråk


\;\; \displaystyle \frac{\frac{{\color{Red} 2}}{{\color{Limegreen} 5}}}{\frac{{\color{Limegreen} 4}}{{\color{Red} 9}}} \displaystyle \; = \; \frac{{\color{Red} 2} \cdot {\color{Red} 9}}{{\color{Limegreen} 5} \cdot {\color{Limegreen} 4}} \; = \; \frac{\cancel{2} \cdot 9}{5 \cdot 2 \cdot \cancel{2}} \; = \; \frac{9}{5 \cdot 2} \; = \; \frac{9}{10}

\;\; Förkorta även på vägen till svaret om möjligt.


Regeln för dubbelbråk:

Ta de "yttersta" ( \, {\color{Red} 2} \, och \, {\color{Red} 9} \, ) till täljaren.

Ta de "innersta" ( \, {\color{Limegreen} 5} \, och \, {\color{Limegreen} 4} \, ) till nämnaren.


Heltal som bråk


\qquad \displaystyle 9 \; = \; \frac{9}{1} \qquad


Generellt:

Alla heltal kan skrivas i bråkform

genom att ge dem nämnaren \, {\color{Red} 1} \, .


Bråk gånger heltal


\displaystyle \frac{2}{3} \cdot 9 \; = \; \frac{2}{3} \cdot \frac{9}{1} \; = \; \frac{2 \cdot 9}{3 \cdot 1} \; = \; \frac{2 \cdot 3 \cdot \cancel{3}}{\cancel{3}} \; = \; 6

Snabbare:

\displaystyle \frac{2}{3} \cdot 9 \; = \; \frac{2 \cdot 9}{3} \; = \; \frac{18}{3} \; = \; 6


\displaystyle 2 \cdot \frac{5}{7} \; = \; \frac{2 \cdot 5}{7} \; = \; \frac{10}{7}


Regel:

Ta täljaren \times heltalet, bibehåll nämnaren.


Bråkdel av ett tal


Bestäm \; \displaystyle \frac{5}{6} \; av \; 12 \; .

\quad \displaystyle \frac{5}{6} \; {\color {Red} {\cdot}} \; \displaystyle 12 \; = \; \frac{5 \cdot 12}{6} \; = \; \frac{5 \cdot 2 \cdot \cancel{6}}{\cancel{6}} \; = \; 10 \quad


Regel:

Översätt av till gånger.


Bestäm \; \displaystyle \frac{4}{5} \; av \; \displaystyle \frac{7}{8} \; .

\quad \displaystyle \frac{4}{5} \; {\color {Red} {\cdot}} \; \displaystyle \frac{7}{8} \; = \; \frac{4 \cdot 7}{5 \cdot 8} \; = \; \frac{\cancel{4} \cdot 7}{5 \cdot 2 \cdot \cancel{4}} \; = \; \frac{7}{10} \quad




Copyright © 2019 TechPages AB. All Rights Reserved.