Skillnad mellan versioner av "1.5 Bråkräkning"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 9: | Rad 9: | ||
|} | |} | ||
+ | |||
+ | == <b><span style="color:#931136">Tal i bråkform</span></b> == | ||
+ | <br> | ||
<math> \qquad\quad </math><div class="ovnE"> | <math> \qquad\quad </math><div class="ovnE"> | ||
[[Image: Bild Tal i brakform 30.jpg]] | [[Image: Bild Tal i brakform 30.jpg]] | ||
− | + | Bråkstrecket betyder division: | |
− | <math> \quad\; \displaystyle \frac{{\color{Limegreen} 3}}{{\color{Red} 4}} \; = \; {\color{Limegreen} 3} \, / \, {\color{Red} 4} \; = \; 0,75 </math></big> | + | <big><math> \quad\; \displaystyle \frac{{\color{Limegreen} 3}}{{\color{Red} 4}} \; = \; {\color{Limegreen} 3} \, / \, {\color{Red} 4} \; = \; 0,75 </math></big> |
</div> | </div> | ||
+ | |||
+ | <big> | ||
+ | Generellt: | ||
+ | <div class="border-divblue"> | ||
+ | Alla tal i bråkform kan skrivas i decimalform, men inte tvärtom. | ||
+ | </div> | ||
+ | T.ex. <math> \quad\sqrt{2} = 1,4142135623730950488\ldots \quad </math> kan inte anges i bråkform eftersom det har en oändlig [[1.3_Decimaltal%2B#Icke-periodisk_decimalutveckling|<b><span style="color:blue">icke-periodisk decimalutveckling</span></b>]]. | ||
+ | |||
+ | Alla tal som kan skrivas i bråkform kallas för <b><span style="color:red">rationella</span></b>. De som inte kan skrivas i bråkform kallas för <b><span style="color:red">irrationella</span></b>, se [[1.1_Om_tal#Olika_typer_av_tal|<b><span style="color:blue">Olika typer av tal</span></b>]]. | ||
+ | </big> | ||
+ | |||
+ | |||
+ | == <b><span style="color:#931136">Blandad form</span></b> == | ||
+ | <br> | ||
+ | <div class="ovnC"> | ||
+ | <big>Skriv bråket <math> \; \frac{7}{2} \; </math> till blandad form:</big> | ||
+ | |||
+ | <math> \quad \displaystyle \frac{7}{\color {Red} 2} \; = \; 7 \, / \, \color {Red} 2 \; = \; \color {Limegreen} 3 \,, {\rm rest} \; 1 \; = \; \boxed{\color {Limegreen} 3 \,\frac{1}{\color {Red} 2}} \quad </math> | ||
+ | |||
+ | <math> \quad </math> Eller använd miniräknare<span style="color:black">:</span> | ||
+ | |||
+ | <math> \quad \displaystyle \frac{7}{\color {Red} 2} \; = \; 7 \, / \, \color {Red} 2 \; = \quad\; 3,5 \quad\; = \; \color {Limegreen} 3 \,\frac{1}{\color {Red} 2} \quad </math> | ||
+ | </div> | ||
+ | |||
+ | <big> | ||
+ | <b><span style="color:#931136">OBS!</span></b> | ||
+ | <div class="border-divblue"> | ||
+ | I blandade former står mellan heltalet och | ||
+ | |||
+ | bråket ett osynligt <big><big><span style="color:red">+</span></big></big> : <math> \quad \displaystyle \color {Limegreen} 3 \,\frac{1}{\color {Red} 2} \; = \; \color {Limegreen} 3 </math> <big><big><span style="color:red">+</span></big></big> <math> \displaystyle \frac{1}{\color {Red} 2} \quad </math> | ||
+ | |||
+ | Läs därför: "Tre <b><span style="color:red">och</span></b> en halv" | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <b><span style="color:#931136">Omvänt:</span></b></big> | ||
+ | <div class="ovnC"> | ||
+ | <big>Skriv blandade formen till bråk:</big> | ||
+ | |||
+ | <math> \quad \displaystyle \boxed{\color {Limegreen} 3\,\frac{1}{\color {Red} 2}} \;\; = \;\; \frac{\color {Limegreen} 3 \, \cdot \color {Red} 2 \quad + \quad 1}{\color {Red} 2} \;\; = \;\; \frac{7}{\color {Red} 2} </math> | ||
+ | |||
+ | <math> \quad </math> Därför att<span style="color:black">:</span> | ||
+ | |||
+ | <math> \quad \displaystyle \color {Limegreen} 3\,\frac{1}{\color {Red} 2} \; = \; \color {Limegreen} 3 \; + \; \frac{1}{\color {Red} 2} = \frac{\color {Limegreen} 3}{1} + \frac{1}{\color {Red} 2} \; = </math> | ||
+ | |||
+ | <math> \qquad\;\;\, \displaystyle \; = \; \frac{\color {Limegreen} 3 \cdot \color {Red} 2}{1 \cdot \color {Red} 2} \; + \; \frac{1}{\color {Red} 2} \; = \; \frac{6}{\color{Red} 2} \; + \; \frac{1}{\color{Red} 2} \; = \; \frac{7}{\color{Red} 2} </math> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <big> | ||
+ | <b><span style="color:#931136">Regeln för att skriva en blandad form till bråk:</span></b> | ||
+ | <div class="border-divblue"> | ||
+ | |||
+ | <math> \quad \displaystyle \color {Limegreen} a\;\frac{b}{\color {Red} c} \quad = \quad \frac{\color {Limegreen} a \, \cdot \color {Red} c \quad + \quad b}{\color {Red} c} \quad </math> | ||
+ | </div> | ||
+ | </big> | ||
Rad 23: | Rad 82: | ||
<big>Förkorta bråken så långt som möjligt:</big> | <big>Förkorta bråken så långt som möjligt:</big> | ||
− | <math> | + | <b>1)</b> <math> \quad \displaystyle \frac{2}{4} \; = \; \frac{1 \cdot 2}{2 \cdot 2} \; = \; \frac{1 \cdot \cancel{\color{Red} 2}}{2 \cdot \cancel{\color{Red} 2}} \; = \; \frac{1}{2} </math> |
− | <math> | + | <b>2)</b> <math> \quad \displaystyle \frac{6}{9} \; = \; \frac{2 \cdot 3}{3 \cdot 3} \; = \; \frac{2 \cdot \cancel{\color{Red} 3}}{3 \cdot \cancel{\color{Red} 3}} \; = \; \frac{2}{3} </math> |
+ | |||
+ | <b>3)</b> <math> \quad \displaystyle \frac{10}{15} \; = \; \frac{2 \cdot 5}{3 \cdot 5} \; = \; \; \frac{2 \cdot \cancel{\color{Red} 5}}{3 \cdot \cancel{\color{Red} 5}} \; = \; \frac{2}{3} </math> | ||
+ | |||
+ | <b>4)</b> <math> \quad \displaystyle \frac{8}{24} \; = \; \frac{\cancel{\color{Red} 2} \cdot 4}{\cancel{\color{Red} 2} \cdot 12} \, = \, \frac{\cancel{\color{Red} 2} \cdot 2}{\cancel{\color{Red} 2} \cdot 6} \, = \, \frac{\cancel{\color{Red} 2} \cdot 1}{\cancel{\color{Red} 2} \cdot 3} \, = \, \frac{1}{3} </math> | ||
<b>Metoden:</b> | <b>Metoden:</b> | ||
− | Hitta | + | Hitta en gemensam [[1.1_Om_tal#Summa_.5C.28-.5C.29_Differens_.5C.28-.5C.29_Produkt_.5C.28-.5C.29_Kvot|<b><span style="color:blue">faktor</span></b>]] hos täljaren och nämna- |
− | + | ren. <b><span style="color:red">Dividera</span></b> både täljaren och nämnaren med | |
− | <b><span style="color: | + | samma gemensamma faktor. |
+ | </div> | ||
+ | |||
+ | |||
+ | <big> | ||
+ | <b><span style="color:#931136">Rekommendation:</span></b> | ||
+ | <div class="border-divblue"> | ||
+ | Förkorta alltid ett bråk när det är möjligt för att få | ||
− | + | mindre tal och minska risken för felräknning. | |
</div> | </div> | ||
+ | </big> | ||
Rad 44: | Rad 115: | ||
<big>Förläng bråken:</big> | <big>Förläng bråken:</big> | ||
− | <math> \quad \displaystyle \frac{3}{4} \; = \; \frac{3 {\color{Red} | + | <b>1)</b> <math> \quad \displaystyle \frac{3}{4} \; = \; \frac{3 \cdot {\color{Red} 3}}{4 \cdot {\color{Red} 3}} \; = \; \frac{9}{12} </math> |
− | <math> \quad \displaystyle \frac{2}{3} \; = \; \frac{2 {\color{Red} | + | <b>2)</b> <math> \quad \displaystyle \frac{2}{3} \; = \; \frac{2 \cdot {\color{Red} 4}}{3 \cdot {\color{Red} 4}} \; = \; \frac{8}{12} </math> |
− | <math> \quad \displaystyle \frac{3}{4} \; = \; \frac{3 {\color{Red} { | + | <b>3)</b> <math> \quad \displaystyle \frac{3}{4} \; = \; \frac{3 \cdot {\color{Red} 5}}{4 \cdot {\color{Red} 5}} \; = \; \frac{15}{20} \; = \; \frac{15 \cdot {\color{Red} 5}}{20 \cdot {\color{Red} 5}} \; = \; \frac{75}{100} </math> |
+ | |||
+ | <b>4)</b> <math> \quad \displaystyle {1 \over 8} \; = \; {1 \cdot {\color{Red} 5} \over 8 \cdot {\color{Red} 5}} \; = \; {5 \over 40} \; = \; {5 \cdot {\color{Red} 5} \over 40 \cdot {\color{Red} 5}} \; = \; {25 \over 200} \; = </math> | ||
+ | |||
+ | <math> \qquad\quad\; \displaystyle = \; {25 \cdot {\color{Red} 5} \over 200 \cdot {\color{Red} 5}} \; = \; {125 \over 1\,000} </math> | ||
<b>Metoden:</b> | <b>Metoden:</b> | ||
− | <b><span style="color:red">Multiplicera</span></b> täljaren och nämnaren med samma tal | + | <b><span style="color:red">Multiplicera</span></b> täljaren och nämnaren med samma tal. |
+ | </div> | ||
+ | |||
+ | |||
+ | == <b><span style="color:#931136">Varför förlängning?</span></b> == | ||
+ | <br> | ||
+ | <div class="ovnA"> | ||
+ | Exemplen <b>1)</b> och <b>2)</b> visar att bråken genom förläng- | ||
+ | |||
+ | ning kan få samma nämnare, vilket gör att man t.ex. | ||
+ | |||
+ | kan jämföra dem med varandra<span style="color:black">:</span> <math> \quad\;\; \displaystyle \frac{9}{12} \, > \, \frac{8}{12} </math> | ||
+ | |||
+ | och därmed avgöra<span style="color:black">:</span> <math> \qquad\qquad\qquad\; \displaystyle \frac{3}{4} \, > \, \frac{2}{3} </math> | ||
+ | |||
+ | Dessutom kam man addera och subtrahera dem. | ||
+ | |||
+ | Exemplen <b>3)</b> och <b>4)</b> visar att bråken genom förläng- | ||
+ | |||
+ | ning kan få en <math> \, 10</math>-potens i nämnaren, vilket t.ex. | ||
− | + | gör att man direkt kan skriva dem till decimaltal. | |
</div> | </div> | ||
+ | |||
+ | |||
+ | <big> | ||
+ | <b><span style="color:#931136">Slutsats:</span></b> | ||
+ | <div class="border-divblue"> | ||
+ | Både förkortning och förlängning bibehåller | ||
+ | |||
+ | bråkets <b><span style="color:red">värde</span></b>. | ||
+ | </div> | ||
+ | </big> | ||
Rad 64: | Rad 168: | ||
<math> \quad \displaystyle \frac{1}{\color{Red} 5} \; + \; \frac{3}{\color{Red} 5} \; = \; \frac{4}{\color{Red} 5} </math> | <math> \quad \displaystyle \frac{1}{\color{Red} 5} \; + \; \frac{3}{\color{Red} 5} \; = \; \frac{4}{\color{Red} 5} </math> | ||
− | <math> \quad \displaystyle \frac{11}{\color{Red} {12}} \; - \; \frac{5}{\color{Red} {12}} \; = \; \frac{6}{\color{Red} {12}} \; = \; \frac{ | + | <math> \quad \displaystyle \frac{11}{\color{Red} {12}} \; - \; \frac{5}{\color{Red} {12}} \; = \; \frac{6}{\color{Red} {12}} \; = \; \frac{1 \cdot \cancel{6}}{2 \cdot \cancel{6}} \; = \; \frac{1}{2} </math> |
<math> \quad \displaystyle \frac{5}{\color{Red} {11}} + \frac{13}{\color{Red} {11}} - \frac{9}{\color{Red} {11}} = \frac{5+13-9}{\color{Red} {11}} = \frac{9}{\color{Red} {11}} \quad </math> | <math> \quad \displaystyle \frac{5}{\color{Red} {11}} + \frac{13}{\color{Red} {11}} - \frac{9}{\color{Red} {11}} = \frac{5+13-9}{\color{Red} {11}} = \frac{9}{\color{Red} {11}} \quad </math> | ||
Rad 104: | Rad 208: | ||
<b><span style="color:red">sam nämnare</span></b> (oftast nämnarnas produkt). | <b><span style="color:red">sam nämnare</span></b> (oftast nämnarnas produkt). | ||
− | Använd | + | Använd <b><span style="color:#931136">regeln för add./subtr. av bråk</span></b> |
− | <b><span style="color:#931136"> | + | <b><span style="color:#931136">med <span style="color:red">lika</span> nämnare</span></b>. |
</div> | </div> | ||
</big> | </big> | ||
Rad 118: | Rad 222: | ||
<math> \quad \displaystyle \frac{2}{3} \; \cdot \; \frac{4}{7} \; = \; \frac{2 \cdot 4}{3 \cdot 7} \; = \; \frac{8}{21} </math> | <math> \quad \displaystyle \frac{2}{3} \; \cdot \; \frac{4}{7} \; = \; \frac{2 \cdot 4}{3 \cdot 7} \; = \; \frac{8}{21} </math> | ||
− | <math> \quad \displaystyle \frac{3}{4} \; \cdot \; \frac{2}{3} \; = \; \frac{3 \cdot 2}{4 \cdot 3} \; = \; \frac{6}{12} \; = \; \frac{ | + | <math> \quad \displaystyle \frac{3}{4} \; \cdot \; \frac{2}{3} \; = \; \frac{3 \cdot 2}{4 \cdot 3} \; = \; \frac{6}{12} \; = \; \frac{1 \cdot \cancel{6}}{2 \cdot \cancel{6}} \; = \; \frac{1}{2} </math> |
</div> | </div> | ||
Rad 150: | Rad 254: | ||
<math> \quad \displaystyle \frac{1}{2} \; \Big/ \; \frac{3}{4} \; = \; \frac{1}{2} \; {\color{Red} {\cdot \; \frac{4}{3}}} \; = \; \frac{1 \cdot 4}{2 \cdot 3} \; = \; \frac{4}{6} \; = \; </math> | <math> \quad \displaystyle \frac{1}{2} \; \Big/ \; \frac{3}{4} \; = \; \frac{1}{2} \; {\color{Red} {\cdot \; \frac{4}{3}}} \; = \; \frac{1 \cdot 4}{2 \cdot 3} \; = \; \frac{4}{6} \; = \; </math> | ||
− | <math> \qquad\qquad\; \displaystyle \; = \; \frac{ | + | <math> \qquad\qquad\; \displaystyle \; = \; \frac{\cancel{2} \cdot 2}{\cancel{2} \cdot 3} \; = \; \frac{2}{3} </math> |
<math> \quad \displaystyle \frac{2}{3} \; \Big/ \; \frac{5}{7} \; = \; \frac{2}{3} \; {\color{Red} {\cdot \; \frac{7}{5}}} \; = \; \frac{2 \cdot 7}{3 \cdot 5} \; = \; \frac{14}{15} </math> | <math> \quad \displaystyle \frac{2}{3} \; \Big/ \; \frac{5}{7} \; = \; \frac{2}{3} \; {\color{Red} {\cdot \; \frac{7}{5}}} \; = \; \frac{2 \cdot 7}{3 \cdot 5} \; = \; \frac{14}{15} </math> | ||
Rad 226: | Rad 330: | ||
<big> | <big> | ||
− | <b><span style="color:#931136">Regel | + | <b><span style="color:#931136">Regel:</span></b> |
<div class="border-divblue"> | <div class="border-divblue"> | ||
Ta täljaren <math> \times </math> heltalet, bibehåll nämnaren. | Ta täljaren <math> \times </math> heltalet, bibehåll nämnaren. | ||
Rad 256: | Rad 360: | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Versionen från 8 september 2019 kl. 15.48
<< Förra demoavsnitt | Genomgång | Övningar | Nästa demoavsnitt >> |
Tal i bråkform
Bråkstrecket betyder division:
\( \quad\; \displaystyle \frac{{\color{Limegreen} 3}}{{\color{Red} 4}} \; = \; {\color{Limegreen} 3} \, / \, {\color{Red} 4} \; = \; 0,75 \)
Generellt:
Alla tal i bråkform kan skrivas i decimalform, men inte tvärtom.
T.ex. \( \quad\sqrt{2} = 1,4142135623730950488\ldots \quad \) kan inte anges i bråkform eftersom det har en oändlig icke-periodisk decimalutveckling.
Alla tal som kan skrivas i bråkform kallas för rationella. De som inte kan skrivas i bråkform kallas för irrationella, se Olika typer av tal.
Blandad form
Skriv bråket \( \; \frac{7}{2} \; \) till blandad form:
\( \quad \displaystyle \frac{7}{\color {Red} 2} \; = \; 7 \, / \, \color {Red} 2 \; = \; \color {Limegreen} 3 \,, {\rm rest} \; 1 \; = \; \boxed{\color {Limegreen} 3 \,\frac{1}{\color {Red} 2}} \quad \)
\( \quad \) Eller använd miniräknare:
\( \quad \displaystyle \frac{7}{\color {Red} 2} \; = \; 7 \, / \, \color {Red} 2 \; = \quad\; 3,5 \quad\; = \; \color {Limegreen} 3 \,\frac{1}{\color {Red} 2} \quad \)
OBS!
I blandade former står mellan heltalet och
bråket ett osynligt + : \( \quad \displaystyle \color {Limegreen} 3 \,\frac{1}{\color {Red} 2} \; = \; \color {Limegreen} 3 \) + \( \displaystyle \frac{1}{\color {Red} 2} \quad \)
Läs därför: "Tre och en halv"
Omvänt:
Skriv blandade formen till bråk:
\( \quad \displaystyle \boxed{\color {Limegreen} 3\,\frac{1}{\color {Red} 2}} \;\; = \;\; \frac{\color {Limegreen} 3 \, \cdot \color {Red} 2 \quad + \quad 1}{\color {Red} 2} \;\; = \;\; \frac{7}{\color {Red} 2} \)
\( \quad \) Därför att:
\( \quad \displaystyle \color {Limegreen} 3\,\frac{1}{\color {Red} 2} \; = \; \color {Limegreen} 3 \; + \; \frac{1}{\color {Red} 2} = \frac{\color {Limegreen} 3}{1} + \frac{1}{\color {Red} 2} \; = \)
\( \qquad\;\;\, \displaystyle \; = \; \frac{\color {Limegreen} 3 \cdot \color {Red} 2}{1 \cdot \color {Red} 2} \; + \; \frac{1}{\color {Red} 2} \; = \; \frac{6}{\color{Red} 2} \; + \; \frac{1}{\color{Red} 2} \; = \; \frac{7}{\color{Red} 2} \)
Regeln för att skriva en blandad form till bråk:
\( \quad \displaystyle \color {Limegreen} a\;\frac{b}{\color {Red} c} \quad = \quad \frac{\color {Limegreen} a \, \cdot \color {Red} c \quad + \quad b}{\color {Red} c} \quad \)
Förkortning av bråk
Förkorta bråken så långt som möjligt:
1) \( \quad \displaystyle \frac{2}{4} \; = \; \frac{1 \cdot 2}{2 \cdot 2} \; = \; \frac{1 \cdot \cancel{\color{Red} 2}}{2 \cdot \cancel{\color{Red} 2}} \; = \; \frac{1}{2} \)
2) \( \quad \displaystyle \frac{6}{9} \; = \; \frac{2 \cdot 3}{3 \cdot 3} \; = \; \frac{2 \cdot \cancel{\color{Red} 3}}{3 \cdot \cancel{\color{Red} 3}} \; = \; \frac{2}{3} \)
3) \( \quad \displaystyle \frac{10}{15} \; = \; \frac{2 \cdot 5}{3 \cdot 5} \; = \; \; \frac{2 \cdot \cancel{\color{Red} 5}}{3 \cdot \cancel{\color{Red} 5}} \; = \; \frac{2}{3} \)
4) \( \quad \displaystyle \frac{8}{24} \; = \; \frac{\cancel{\color{Red} 2} \cdot 4}{\cancel{\color{Red} 2} \cdot 12} \, = \, \frac{\cancel{\color{Red} 2} \cdot 2}{\cancel{\color{Red} 2} \cdot 6} \, = \, \frac{\cancel{\color{Red} 2} \cdot 1}{\cancel{\color{Red} 2} \cdot 3} \, = \, \frac{1}{3} \)
Metoden:
Hitta en gemensam faktor hos täljaren och nämna-
ren. Dividera både täljaren och nämnaren med
samma gemensamma faktor.
Rekommendation:
Förkorta alltid ett bråk när det är möjligt för att få
mindre tal och minska risken för felräknning.
Förlängning av bråk
Förläng bråken:
1) \( \quad \displaystyle \frac{3}{4} \; = \; \frac{3 \cdot {\color{Red} 3}}{4 \cdot {\color{Red} 3}} \; = \; \frac{9}{12} \)
2) \( \quad \displaystyle \frac{2}{3} \; = \; \frac{2 \cdot {\color{Red} 4}}{3 \cdot {\color{Red} 4}} \; = \; \frac{8}{12} \)
3) \( \quad \displaystyle \frac{3}{4} \; = \; \frac{3 \cdot {\color{Red} 5}}{4 \cdot {\color{Red} 5}} \; = \; \frac{15}{20} \; = \; \frac{15 \cdot {\color{Red} 5}}{20 \cdot {\color{Red} 5}} \; = \; \frac{75}{100} \)
4) \( \quad \displaystyle {1 \over 8} \; = \; {1 \cdot {\color{Red} 5} \over 8 \cdot {\color{Red} 5}} \; = \; {5 \over 40} \; = \; {5 \cdot {\color{Red} 5} \over 40 \cdot {\color{Red} 5}} \; = \; {25 \over 200} \; = \)
\( \qquad\quad\; \displaystyle = \; {25 \cdot {\color{Red} 5} \over 200 \cdot {\color{Red} 5}} \; = \; {125 \over 1\,000} \)
Metoden:
Multiplicera täljaren och nämnaren med samma tal.
Varför förlängning?
Exemplen 1) och 2) visar att bråken genom förläng-
ning kan få samma nämnare, vilket gör att man t.ex.
kan jämföra dem med varandra: \( \quad\;\; \displaystyle \frac{9}{12} \, > \, \frac{8}{12} \)
och därmed avgöra: \( \qquad\qquad\qquad\; \displaystyle \frac{3}{4} \, > \, \frac{2}{3} \)
Dessutom kam man addera och subtrahera dem.
Exemplen 3) och 4) visar att bråken genom förläng-
ning kan få en \( \, 10\)-potens i nämnaren, vilket t.ex.
gör att man direkt kan skriva dem till decimaltal.
Slutsats:
Både förkortning och förlängning bibehåller
bråkets värde.
Addition och subtraktion av bråk
Fall 1 Lika nämnare
\( \quad \displaystyle \frac{1}{\color{Red} 5} \; + \; \frac{3}{\color{Red} 5} \; = \; \frac{4}{\color{Red} 5} \)
\( \quad \displaystyle \frac{11}{\color{Red} {12}} \; - \; \frac{5}{\color{Red} {12}} \; = \; \frac{6}{\color{Red} {12}} \; = \; \frac{1 \cdot \cancel{6}}{2 \cdot \cancel{6}} \; = \; \frac{1}{2} \)
\( \quad \displaystyle \frac{5}{\color{Red} {11}} + \frac{13}{\color{Red} {11}} - \frac{9}{\color{Red} {11}} = \frac{5+13-9}{\color{Red} {11}} = \frac{9}{\color{Red} {11}} \quad \)
Regeln för add./subtr. av bråk med lika nämnare:
Bibehåll och ta över den gemensamma
nämnaren. Addera/subtrahera täljarna.
Fall 2 Olika nämnare
\( \quad \displaystyle \frac{1}{2} \; + \; \frac{1}{3} \; = \; \frac{1 \cdot {\color{Limegreen} 3}}{2 \cdot {\color{Limegreen} 3}} \; + \; \frac{1 \cdot {\color{Limegreen} 2}}{3 \cdot {\color{Limegreen} 2}} \; = \; \)
\( \qquad\qquad\;\; \displaystyle \; = \; \frac{3}{\color{Red} 6} \; + \; \frac{2}{\color{Red} 6} \; = \; \frac{5}{\color{Red} 6} \)
\( \quad \displaystyle \frac{2}{3} \; + \; \frac{1}{5} \; = \; \frac{2 \cdot {\color{Limegreen} 5}}{3 \cdot {\color{Limegreen} 5}} \; + \; \frac{1 \cdot {\color{Limegreen} 3}}{5 \cdot {\color{Limegreen} 3}} \; = \; \)
\( \qquad\qquad\;\; \displaystyle \; = \; \frac{10}{\color{Red} {15}} \; + \; \frac{3}{\color{Red} {15}} \; = \; \frac{13}{\color{Red} {15}} \)
\( \quad \displaystyle \frac{7}{4} \; - \; \frac{5}{3} \; = \; \frac{7 \cdot {\color{Limegreen} 3}}{4 \cdot {\color{Limegreen} 3}} \; - \; \frac{5 \cdot {\color{Limegreen} 4}}{3 \cdot {\color{Limegreen} 4}} \; = \; \)
\( \qquad\qquad\;\; \displaystyle \; = \; \frac{21}{\color{Red} {12}} \; - \; \frac{20}{\color{Red} {12}} \; = \; \frac{1}{\color{Red} {12}} \quad \)
Regeln för add./subtr. av bråk med olika nämnare:
Förläng bråken så att de får en gemen-
sam nämnare (oftast nämnarnas produkt).
Använd regeln för add./subtr. av bråk
med lika nämnare.
Multiplikation av bråk
\( \quad \displaystyle \frac{1}{2} \; \cdot \; \frac{3}{4} \; = \; \frac{1 \cdot 3}{2 \cdot 4} \; = \; \frac{3}{8}\)
\( \quad \displaystyle \frac{2}{3} \; \cdot \; \frac{4}{7} \; = \; \frac{2 \cdot 4}{3 \cdot 7} \; = \; \frac{8}{21} \)
\( \quad \displaystyle \frac{3}{4} \; \cdot \; \frac{2}{3} \; = \; \frac{3 \cdot 2}{4 \cdot 3} \; = \; \frac{6}{12} \; = \; \frac{1 \cdot \cancel{6}}{2 \cdot \cancel{6}} \; = \; \frac{1}{2} \)
Regeln för multiplikation av bråk:
Multiplicera: | täljarna | med | varandra, |
nämnarna | med | varandra. |
Allmän regel för redovisning av bråkuppgifter:
Förkorta dina svar så långt som möjligt.
Division av bråk
\( \quad \displaystyle \frac{1}{2} \; \Big/ \; \frac{3}{4} \; = \; \frac{1}{2} \; {\color{Red} {\cdot \; \frac{4}{3}}} \; = \; \frac{1 \cdot 4}{2 \cdot 3} \; = \; \frac{4}{6} \; = \; \)
\( \qquad\qquad\; \displaystyle \; = \; \frac{\cancel{2} \cdot 2}{\cancel{2} \cdot 3} \; = \; \frac{2}{3} \)
\( \quad \displaystyle \frac{2}{3} \; \Big/ \; \frac{5}{7} \; = \; \frac{2}{3} \; {\color{Red} {\cdot \; \frac{7}{5}}} \; = \; \frac{2 \cdot 7}{3 \cdot 5} \; = \; \frac{14}{15} \)
\( \quad \displaystyle \frac{4}{7} \; \Big/ \; \frac{3}{5} \; = \; \frac{4}{7} \; {\color{Red} {\cdot \; \frac{5}{3}}} \; = \; \frac{4 \cdot 5}{7 \cdot 3} \; = \; \frac{20}{21} \)
Regeln för division av bråk:
Ersätt \( / \) med \( {\color{Red} {\cdot}} \) och invertera det bråk som
man skulle dividera med (dvs det andra).
Använd regeln för multiplikation av bråk.
Att invertera t.ex. \( \, \displaystyle \frac{3}{4} \, \) ger \( \, \displaystyle {\color{Red} {\frac{4}{3}}} \; \).
Dubbelbråk
\( \;\; \displaystyle \frac{\frac{{\color{Red} 2}}{{\color{Limegreen} 5}}}{\frac{{\color{Limegreen} 4}}{{\color{Red} 9}}} \) \( \displaystyle \; = \; \frac{{\color{Red} 2} \cdot {\color{Red} 9}}{{\color{Limegreen} 5} \cdot {\color{Limegreen} 4}} \; = \; \frac{\cancel{2} \cdot 9}{5 \cdot 2 \cdot \cancel{2}} \; = \; \frac{9}{5 \cdot 2} \; = \; \frac{9}{10} \)
\( \;\; \) Förkorta även på vägen till svaret om möjligt.
Regeln för dubbelbråk:
Ta de "yttersta" (\( \, {\color{Red} 2} \, \) och \( \, {\color{Red} 9} \, \)) till täljaren.
Ta de "innersta" (\( \, {\color{Limegreen} 5} \, \) och \( \, {\color{Limegreen} 4} \, \)) till nämnaren.
Heltal som bråk
\( \qquad \displaystyle 9 \; = \; \frac{9}{1} \qquad \)
Generellt:
Alla heltal kan skrivas i bråkform
genom att ge dem nämnaren \( \, {\color{Red} 1} \, \).
Bråk gånger heltal
\( \displaystyle \frac{2}{3} \cdot 9 \; = \; \frac{2}{3} \cdot \frac{9}{1} \; = \; \frac{2 \cdot 9}{3 \cdot 1} \; = \; \frac{2 \cdot 3 \cdot \cancel{3}}{\cancel{3}} \; = \; 6 \)
Snabbare:
\( \displaystyle \frac{2}{3} \cdot 9 \; = \; \frac{2 \cdot 9}{3} \; = \; \frac{18}{3} \; = \; 6 \)
\( \displaystyle 2 \cdot \frac{5}{7} \; = \; \frac{2 \cdot 5}{7} \; = \; \frac{10}{7} \)
Regel:
Ta täljaren \( \times \) heltalet, bibehåll nämnaren.
Bråkdel av ett tal
Bestäm \( \; \displaystyle \frac{5}{6} \; \) av \( \; 12 \; \).
\( \quad \displaystyle \frac{5}{6} \; \) \( {\color {Red} {\cdot}} \) \( \; \displaystyle 12 \; = \; \frac{5 \cdot 12}{6} \; = \; \frac{5 \cdot 2 \cdot \cancel{6}}{\cancel{6}} \; = \; 10 \quad \)
Regel:
Översätt av till gånger.
Bestäm \( \; \displaystyle \frac{4}{5} \; \) av \( \; \displaystyle \frac{7}{8} \; \).
\( \quad \displaystyle \frac{4}{5} \; \) \( {\color {Red} {\cdot}} \) \( \; \displaystyle \frac{7}{8} \; = \; \frac{4 \cdot 7}{5 \cdot 8} \; = \; \frac{\cancel{4} \cdot 7}{5 \cdot 2 \cdot \cancel{4}} \; = \; \frac{7}{10} \quad \)
Copyright © 2019 TechPages AB. All Rights Reserved.